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Strong Lensing

IS a very ., effect



Dec (J2000)

3’x3’

| f S 3 o % - " s
O—0 zQF=0 (galax 5 o . :
00— 0 zQF=1 (galax | BB . °
. O zQF=2/no spec-z |, Qe St
—12°150071 % Stars w. spectra = - - .
() No spectra . ®. . e TR T 2Ry
R 5] w - . 1 ; ' . ” I c] .G
o Ot'___} ) " ' -. o 0 ; . ® . .o . & i
P A ot @ il .(g po oo le s c;
16'00" * 5
.,

1700 ¢

18'00"

19'00”

20100" |

25° 20° 15° 10° 4"38m05°

RA (J2000)



Dec (J2000)

3’x3’

~12°15'00" |/

16"00"

1700 ¢

18'00"

19'00”

2000" |

1 1 S , 0 SR - - b .
O—0O zQF=0 (galax : ® N b )
O -0 zQF=1 (galax S ) . ° : e

O zQF=2/no spec-z |, R ; :
*  Stars w. spectra s S T
O No spectra ] L ©: » ot N o ;

Tlee ] 0 - . . 1 ; ’ I o .G
¢ ot’u - '. g 0 e s 5 oﬁ ;
o|On ® .(g S .

25°

20°

15°

RA (J2000)

10° 4"38m05°



Lensing basics
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Lens equation
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If 9, ﬁ and & are small, the true position of the source and its observed position on the
sky are related by a very simple relation, obtained by a geometrical construction. This
relation is called the lens equation and is written as

ODs = BDs + dDys , (2.4)

where D\ s is the angular diameter distance between lens and source.

Defining the reduced deflection angle

af) = =a(0) , (2.5)

B=6-—a@). (2.6)
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Deflection angle

Recall from General Relativity:

A4GM
c2€

For weak gravitational field and small deflection angles

(geometrically-thin lens), a light ray with spatial
trajectory (§4(\), E5(A), r3(A)) that passes through
distribution with 3D density p(r) will be deflected by

4G — ¢
& /d2 /drgp §1afzar3)‘€€_§/|2
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Born approx

a=— V.i®dA. (1.35)

The deflection is thus the integral over the "pull” of the gravitational potential perpen-
dicular to the light path. Note that Vo points away from the lens centre, so @ points
towards it.

As it stands, the equation for & is not useful, as we would have to integrate over the
actual light path. However, since ®/c? < 1, we expect the deflection angle to be

small. Then. we can adopt the Born approximation familiar from scattering theory and

Suppose, therefore, a light ray starts out into +é,-
direction and passes a lens at z = 0, with impact pa-
rameter b. The deflection angle is then given by

n 9 [T
a(b) = —

c2

V1 édz (1.36)

— 00




[Pb: derive]

If the lens is a point mass, then

oM (1.37)
r
with 7 = 1/22 + 92 + 22 = V/b% + 22, b= /22 + y? and
= 02\ GM [ z
Vm—(aycb)_ = (y) . (1.38)

The deflection angle is then

2GM o
(b) = ( )/oo b2+z23/2

4GM *  4GM ([ cos¢
20 e (S, e

( ‘; ) :b< ‘S’f’sg ) (1.40)

Notice that Ry = 26 is the Schwarzschild radius of a (point) mass M, thus

A4GM R
=2— . 1.41
c2b b ( )

Qu»

with

@] =

Also notice that @ is linear in M, thus the deflection angles of an array of lenses can
linearly be superposed.

Note that the deflection angle found here in the framework of general relativity exceeds
by a factor of two that calculated by using standard Newtonian Gravity (see Eq. 1.13),
as anticipated at the beginning of this chapter.



Thin-lens approx




lens model

Point mass & SIS



3.1 Point masses

Let us begin with point masses as lenses. The deflection angle of a point mass was

A4GM |

a=————=¢€,
c2b ’

(3.1)

where €. is the unit vector in radial direction. No direction is prefered in an axisymmetric
situation like that, so we can identify €, with one coordinate axis and thus reduce the
problem to one dimension. Then

The lensing potential is given by

~  4GM D.s =

U= 2 DiDe In 6], (3.3)
as one can show using

s L

Vin|Z| = Z2 (3.4)

The lens equation reads
4GM D
g=p— 2GM Duis (3.5)

B C2D|_9 Ds '



With the definition of the Einstein radius,

_ [4GM Dis
oE = \/ 02 DLDS 3 (36)
we have
0%

Dividing by 6 and setting y = 3/0g and x = 6/6g, the lens equation in its adimen-
sional form is written as

(3.8)

Multiplication with = leads to

2 —zy—1=0, (3.9)

which has two solutions: M

Ty — % PEVril (3.10)

Thus, a point-mass lens has two images for any source, irrespective of its distance y
from the lens. Why not three? Because its mass is singular and thus the time-delay
surface is not continously deformed.

If y =0, x+ = &£1; that is, a source directly behind the point lens has a ring-shaped
image with radius 6. For order-of-magnitude estimates:

(103" <£>1/2( D )_1/2
Mg 10kpc ’

1/2 —1/2
(M D | (3.11)
1012 M Gpc
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Singular Isothermal Sphere

One of the two density profilés satisfying these sets of equations'is given by |

0_2

_ v 4
2rGr2 ’ (3.40)

p(r)

where o, is the velocity dispersion of the “gas” particles and r is the distance from the
sphere center. By projecting the three-dimensional density along the line of sight, we
obtain the corresponding surface density

o

> dz
=8 = 227rG /0 £2 + 22
21

o0
o Z
= ——— |arctan —

G € £l

oy
= 2o (3.41)

2
v

This density profile has a singularity at £ = 0, where the density is ideally infinite.
Nevertheless, it has been used to describe the matter distribution in galaxies, expecially
because it can reproduce the flat rotation curves of spiral galaxies.



[Pb: derive]

By choosing

B 0y,\2 D D5
§o = 4m ( . ) De (3.42)

as the length scale on the lens plane, we obtain:

2 1 ¢ D 1
2(:1:)_0-2) 50_ c S .

T 2GE€& 2x4nG D Dis e (3.43)

Thus, the convergence for the singular isothermal profile is
5(z) = - (3.44)

and the lensing potential (2.15) is
U(z) = |z| . (3.45)

Using Egs. (2.16), we obtain

x
alx) = — , 3.46
@)= (3.46)
and the lens equation reads
x
y=x— — . (3.47)
||

If y < 1, two solutions of the lens equation exist. They ariseatx =y—1and z = y+1,
on opposite sides of the lens center. The corresponding angular positions of the images
are

0. =B=+05 (3.48)

where 0 is the Einstein radius, defined now as

_ [4GM(6) Dys
aE_\/ 2 Dbe (3.49)

The quantity M (0g) is the mass within the Einstein radius. The angular separation
between the two images therefore is A(f) = 20g: the Einstein radius defines a typical
scale for separation between multiple images.



source model

Sersic



The Sersic profile
« Empirically devised by Sersic (1963) as a good fitting fn

RY/
I(r) = IO exp(— ; )

I(r) = intensity at radius r

|, = central intensity (intensity at centre)

o = scalelength (radius at which intensity drops by e
n = Sersic index (shape parameter)

Can be used to describe most structures, e.qg.,

Elliptical: 1.5<n <20 Bulge: 1.5<n <10
Pseudo-bulge: 1 <n <2 Bar: n~0.5
Disc: n~1

Total light profile = sum of components.

Galaxies — AS 3011




Sersic shapes
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Caustics, Critical line

Jacobian matrix



[credit: Suyu]
Magnification

Lensing conserves surface brightness
Flux F = surface brightness x solid angle

Magnification = |:observed / I:intrinsic = dQobserved /dgintrinsic

Define Jacobian matri/
9B AB;

A(0) 20 with A;; = 96,

Magnification factor is 1

#O6) = Gt A(0)
* u>0 : positive parity
* u<0 : negative parity (mirror image of source)
» det A =0 : critical points/curves

11




[credit: Suyu]

Image distortion |

Rewrite Jacobian matrix:

00

u0) = 22 (5, - 2V _

80,00,

[deriv]
. N
l—Kk—y  —72
N l=Kk+m

where y; and v, are the two components of shear

Y =71 +ive =[]
1
— Q(Qp,ll o ¢,22)

Y2 = ¢,12

Magnification in terms of k and y is:

1 1

H=det A~ (1-r)2—

7|2



[credit: Suyu]

Image distortion |l

Surface brightness conservation:
% 1(9) = I(S) [/6(9)] <+<— Master eq. used for the observation!

To visualize distortion, consider locally linearized lens eq.:

3 Y \NO linearised Lens eq.
= A(QO)Q derived from magnification eq.

Question: for an infinitesimally\swnaﬁll circular source,
what would the shape of its lensed image be?
(1) Circular const. matrix

(2) Elliptical

(3) Boxy

(4) lrregular

(5) None of the above

13
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derive this picture! I mage d |St0 rthn I I I

(w/o shear) simple
. convergence and
(w. shear) little math shear

TN e
@L\/ L

S

€

Credit: M. Bradac

O convergence only

€
The lensed image of a small circular source with radius R is an ellipse

Major axis: Minor axis:
R B R _ R B R
1—r—1y] (1_@(1_'9":) - 1-k+y] Q-r)1+]g])
0
reduced shear g(@) = 7(0) /

- [1-x(0)
Angle of major axis from 6, the same as the shear angle ¢
[Exercise: show these properties. Hint: try 3(\) :\&QA—I_ R(cos A, sin )]
0



[credit: Suyu]

Image distortion |V

convergence and
shear

S AN T
/ \ e '8
=— 5
/62| K/ 92l 2
B . g
¢ O convergence only 5
observable!
€
Axis ratio of ellipse:
b R R ~ 1—|g|

« - A+l A=m—lg) ~ 1+l

ﬂ shapes of lensed images yield estimate of reduced shear
1—-b/a

1+b/a

BUT sources are not intrinsically round...

=) average over many sources, and assume
intrinsic ellipticities are randomly oriented

9] =



angular size of lens is much larger than the angular size of the source!

Ellipticity and local shear

from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.
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[credit: Suyu]

Critical curves and caustics |

det A = O: critical curves on image plane 6
corresponds to caustics on source plane 3

. . PO
Example: non-singular isothermal sphere lens p(r) =
r2 + r?
Source Plane Image Plane
I//, \\‘
\ Y i
Caustic curves Cntical curves

Credit: A. Amara & T. Kitching 19



[credit: Suyu] suggest: visilens

Critical curves and caustics |l

Example: non-singular isothermal ellipsoid lens

Einstein Cusp Fold

Cross . Caustic Caustic

/’\\ /"\ /’\\

Source |,’ : \ ',’ : \ l,’ : \
| | |

Pl ane \\ ,I \\ Il \\ /'

= | O
Plane

Credit: A. Amara & T. Kitching 20




demo from visilens



[https://arxiv.org/abs/astro-ph/9606001v2]
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[https://arxiv.org/abs/astro-ph/9606001v2]
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[credit: Suyu]

Critical curves and caustics VI

Caustics separate regions of different image multiplicity

B2 0,

1 |
3 AA‘ i A H Hy AA‘ADD .
//é} - i [Image credit:
B, \ﬁmgenti 1 ) k{jta;‘-g ntel C KOChanek]
caustic A"h,, al line
radial
i

CCCCCC

Why do we typically find only 2 or 4 images in real
lens systems? Ans.: central image is demagnified

SBS0909+523 HE0435-1223 B1608+656

CASTLES

[Fassnhacht et aI. 2002]
N
@)




Mass-Sheet degeneracy

the mass sheet degeneracy: when adding to a
given mass model, a sheet of constant mass
density (i.e., constant convergence , as defined in
the preceding chapters), one does not change
any of the observables, except for the time-delay.



constant density ==>
constant convergence
= constant potential

V20 = 471Gy
k= 4rGp



The additional mass can be internal to the lensing
galaxy (e.g., ellipticity does not change the total mass
within the Einstein radius, but does change 1 at the
position of the images) or due to intervening objects
along the line of sight.




Elliptical lens

® Scaled by 1/(1-x)

/) Circular lens

@
Cluster = mass O
sheetwith o & °
convergence Py
(1-x) 0 p o
No intervening cluster ® yo® P,
*° @®

Figure 4. 'Two ways of obtaining a given image configuration. The
left panel displays a system with four images, with an elliptical lens
that introduces convergence and shear at the position of the images.
On the right panel, is shown the same image geometry and flux ratios,
but the lens is now circular. One would in principle only obtain two
images with such a lens. The shear required to obtain four images is
introduced by the nearby cluster. The mass density of the cluster is
represented through its convergence k. The mass of the main lens is
scaled accordingly by 1/(1-) so that the image configuration remains
the same as in the left panel: the mass in the main lens and in the
cluster are degenerate. If no independent measurement is available for
at least one of the components (main lens or cluster), it is often difficult
to know, from the modeling alone, what exactly are their respective
contributions.



The exact mass introduced by the mass sheet Increases
the total mass of the lens, but one can re-scale it
and locally change its slope at the position of the
images. The result is that the Image configuration
does not change, but the convergence K, at the

position of the images does change, and modifies
the time-delay.

Therefore, knowledge of the the slope of the mass profile of the
lensing galaxy, whether it be under the form of a model or of a
measurement, is one of the keys to the determination of a
“good” model.



Changing the slope of the lens will change K at
the position of the images, but adding

intervening objects along the line of sight to the
lens has a similar effect. A group or cluster of
galaxies, located angularly close to the lens, will
add its own contribution to the total mass density
at the position of the images. If the group/cluster
has a constant density K, rescaling the total mass
of the lensing galaxy by 1/(1 — K) will leave the
observed images configuration unchanged.



degeneracies can be broken or, at least,
their effect can be strongly minimized, by
constraining in an independent way (1) the
mass profile of the main lens, and (2) the
total mass (and possibly also the radial
mass profile) of any intervening cluster
along the line of sight. This work can be
done with detailed imaging, spectroscopy
of all objects along the line of sight, and by
using numerical multi-components models
for the total lensing potential.



[Credit: Schneider]
The unfortunate mass-sheet degeneracy

For a given source and lens redshift:
The mass distributions «(@) and, for all A,

kA(0) = Ak(0) + (1 — \)

yield the same image configurations, magnification ratios, image shapes!

Magnification depends on X, py = p/A* — but unmeasurable without information

about the source (or source population;

Time-delay affected, (Hy At)y = AM(Hy At)]
Radial slope of density profile affected

[nvariant: (Mass inside) Einstein radius, angular structure (e.g., ellipticity)

Thus:
To determine slope of mass profile, absolute masses (away from the
Einstein radius), Hubble constant, mass-sheet degeneracy must first

be broken!!






[credit: Suyu]

Mass-sheet degeneracy |

Given a lens mass distribution k(8) with potential 1(60)
Consider the following transformation:

¥r(6) = 2161 +50 + c - (1— N)(6)
——

corresponding zero point of
to constant shift lens potential
on source plane (unobservable)

(unobservable)

Transformed deflection angle (=V, ):

a (@) =2A0+s+ (1 - Na(0)

Transformed convergence (=V#y,/2):

ka(0) =X+ (1 — A)k(0)



[credit: Suyu]

Mass-sheet degeneracy ||
Last slide: kx(0) = A+ (1 — A\)&(0)

D)

source scaled and shifted, both unobservable = degeneracy



[credit: Suyu]

Mass-sheet degeneracy |l

163\ B source scaled and shifted,
1 — )\ | 1 — =B both effects unobservable
Magnification
_ H
Ax=(1-NA = p)= (1— \)2
Recall
@ )
B l—Kk—-—m —72
N I =—k+m
=) v, (0) = (1 - \)y(0) 71 Reduced shear invariant
g Y
(1=£x) =1 =A)1 - k) gr = =g




[credit: Suyu]

Mass-sheet degeneracy |V

Fermat potential: 7,(8;3)

......

[Courbin et al. 2002]

= 50— B — 1 (60)

= (1 — A\)7(0; B3) + constant

{ Recall kx(0) = A+ (1 — A)x(0)

Big impact on cosmography!

| Recall At(6; 8) = %AT(B;/B)
=) For fixed At, - model
Dy
Dt 2 = )
" _

True (including external convergence)



Further Reading

[https://arxiv.org/abs/astro-ph/9606001v2]

eIntroduction to Gravitational Lensing
Lecture scripts by Massimo Meneghetti

Lensing Basics: Il/lll. Basic Theory
by Sherry Suyu (slide)

Weak Gravitational Lensing & Cosmic Shear by Peter
Schneider (slide)



