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- relativistic treatment perturbation (2 hr)
- primordial power spectrum (2 hr)
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- Weak Lensing (2 hr)
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Non-linear perturbation (6 w)

- Non-linear power spectrum (2 hr)

- halo model (2 hr)

- N-body simulation algorithms (2 hr)

- Press-Schechter (PS) halo mass function (2 hr)
- Extended-PS (EPS) halo mass function (2 hr)

- halo bias & halo density profile (2 hr)
Statistical analysis (2 w)

- Monte-Carlo Markov Chain sampler (2 hr)

« CosmoMC use (2 hr)



In this lecture, we will demonstrate the non-linear structure formation
via the Spherical Collapse of Dark Matter particles.

In the following slides, | will heavily steal the lecture from F. Bosch







1. Single Halo
Collapsing Dynamics



Non-Linear Evolution

In the linear regime (6 < 1) we can calculate the evolution of a density field of
arbitrary form using linear perturbation theory.

In the non-linear regime (0 > 1) perturbation theory is no longer valid. Modes
start to couple to each other, and one can no longer describe the evolution of the
density field with a simple growth rate: in general, no analytic solutions exist...

Because of this mode-coupling, the density field looses its Gaussian properties,
i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.

T - —
How to proceed?

|
» Oversimplified, but insightful, analytical model (this lecture)
+ Higher-order perturbation theory (see MBW §4.1.7)

» Numerical simulations (see MBW §5.6.2)

L « The Halo Model (see MBW §7.6)

| ———— _:d
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Halo formation—Spherical Collapse
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Top-Hat Spherical Collapse

In order to gain insight into the non-linear evolution of density perturbations,
we now consider the highly idealized case of Top-Hat Spherical Collapse.

——— — T T e

single, top-hat, spherical perturbation. .

* Universe is in matter-dominated phase,
after recombination... j

* Universe is homogeneous, except for a ’

* Collisionless fluid =)» treatment is only {
valid for collisionless Dark Matter.

» Einstein-de Sitter (EdS) cosmology

Although the following treatment is only valid
for an EdS cosmology, similar models can be
constructed for other cosmologies as well,

including ACDM (see MBW §5.1.1 + 5.1.2)

Furthermore, since all cosmologies behave
similar to EAS at early times, this treatment
is always good approximation at high z....
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Top-Hat Spherical Collapse

Consider our spherical top-hat perturbation: Let 7; denote the radius of some
mass shell inside the top-hat at some initial time, ti, and let d; and p; denote the
top-hat overdensity and the back-ground density at that same time.

The mass enclosed by the shell is

M(<r)= ;—lwri?’ pi [1 + 6]

— gm"?’(t) p(t) [1+4(2)]

where the second equality expresses mass conservation: because of spherical
symmetry, the mass inside the shell is conserved, but only up to shell crossing Il

’ Newton's first Theoremﬁ Equation of motion

‘ a spherically symmetric maﬁer" d?r GM

distribution outside a sphere | d2 ~ 2
‘ exerts no force on that sphere ‘

r(t) is the Lagrangian coordinate
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Top-Hat Spherical Collapse

: : : : 1 (dr\?
Integrating the equation of motion once yields AwT

where the integration constant E is clearly the specific energy of our shell.

r=A(1—cosb)
t = B (0 — sin0)

oM, oM
- 2|E|  (2|E))¥?

For E < 0, mass shell is bound, 0 € [0, 27]

and solution can be written in
following parametric form: A

- A3 = GM B?

This solution implies the following evolution for our mass shell:

90 (f- )

, * shell expands from r =0 at 0 =0 (¢t = 0)
} + shell reaches a maximum radius 7max at = 7 (¢ = tmax = 7B)
‘ * shell collapses back to 7 = 0 at 0 = 27 (t = teon = 2tmax)

}

—— S—

—

The time of maximum size is often called the turn-around time,t., = t..x,
while the time of collapse is also called the virialization time ¢, = tcon = 2tia
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Top-Hat Spherical Collapse

Now let us focus on the evolution of the actual overdensity:

IM 3M
The mean density of the top-hat is i i =simioys (1 —cosf)~3

1 1

The mean density of the background is p = 60 = 6-COR2 (0 — sin )~

Hence, the actual overdensity of our spherical top-hat region, according
to the spherical collapse (SC) model, which in general will be non-linear, is

5 2 (1—cosf)3

— qi 2
145" 9 (@ — sinf)

where we have used that A° = GM B?

Before we examine this SC model in some detail, we first compare it
to predictions from linear theory....

© Frank van den Bosch: Yale 2012
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Top-Hat Spherical Collapse

For a number of reasons (in particular for use in EPS theory), it is also useful
to compare this SC overdensity model to what linear theory predicts for §(t).

According to linear theory, perturbation in EdS cosmology evolve as

Siin < D(a) x a o t3/3

In order to use the correct initial conditions (ICs), we have to use our

parametric solution of (%) in the limit § < 1. Using a Taylor series expansion
of sin # and cos 6 one can show that:

tma.x

3 £ 2/3
e e (1) G

this implies that since §(r) = constant inside the top-hat, each
mass shell that is part of the top-hat will furn-around (reach
maximum expansion) at the same time....
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Top-Hat Spherical Collapse

For a number of reasons (in particular for use in EPS theory), it is also useful
to compare this SC overdensity model to what linear theory predicts for 6(%).

According to linear theory, perturbation in EdS cosmology evolve as

Siin < D(a) x a o t2/3

In order to use the correct initial conditions (ICs), we have to use our

parametric solution of (%) in the limit 8 < 1. Using a Taylor series expansion
of sin § and cos € one can show that:

3 £ 2/3
5= %(Gw)2/3( 1 ) (6 < 1)

tmax

Combining the above, we have that, according to linear theory:

2/3 2/3
y 3 7

Olin = 0i | — = —(6m)*/*

1 (tl) 20( 7T) (tmax)
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Turn-Around & Collapse

Spherical Collapse (SC) model: Linear Theory

9 (6 —sin0)? t\%3 3 )
— = N — = /3
2 (1 —cosf)? Otin = 0 (ti> - 20 (6) (t

— — T —

(tta = tmax; 0= 7I')
2

SCmodel: 1+ §(tta) = 91% ~ 5.55

: 3
linear theory:  yn(tia) = %(&r)z/ 3 ~ 1.062

et e

— ———————

(tcoll — 2tta)

SC model: 5(tc011) = o0

3T

linear theory:  §(tcon) = 23—0(127r)2/ = g (

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch: Yale 2012
[from F. Bosch]




Shell Crossing & Virialization

The SC model discussed above is only valid up to the point of shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!

According to the SC model, §(t..11) = oo, which would result in the formation
of a black hole. However, in reality, the collapse is never perfectly spherical.

| T

Q
.E
wn
IS
Q
U
>
<
Q.

turn-around

z Individual oscillating shells interact gr'avifaﬂonally; exchanging energy (virializing). ﬁ‘
| This process, to be described in more detail below, results in a virialized dark matter halo |
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Final Density of a Collapsed Dark Matter Halo

Virialization means that the system relaxes towards virial equilibrium:

We can use the virial theorem to make a simple estimate of the final density
of our collapsed & virialized dark matter halo:

{ Virial Equilibrium: 2—}(} _|_ We =0
i Energy conservation: F: = K; + W; = E; = Ey, i

-

GM

Tta . 4 I'vir = 'rta,/ 2
GM -

2""vir

Eta = Wta et

Er = W;/2 = —

A mass shell is expected to virialize at half its turn-around radius.

Hence, after virialization, the average density of the material enclosed
by the mass shell is 8 times denser than at turn-around....
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Final Density of a Collapsed Dark Matter Halo

We now compute the average overdensity of a virialized dark matter halo:

P (tcoll)

1+Avir51+5t — —
( COH) p(tcoll)

for consistency with many textbooks and journal articles, we use the symbol A,

rather than dvi: to indicate the virialized overdensity....

Using that p oc a2 o< t =2 (EdS), and that tecon = 2t:. we have that

: 8pta 2
1-|—Avir=_ — 32 1—|—(5a = 1871“ ~ 178
" plt)/a o2+ 0w)

For non-EdS cosmologies, the virial overdensities are well approximated by

Avir ~ (187 + 602 — 3222)/Qm (tvir)
Avir ~ (1872 + 822 — 39 22) /Qum (tvir)

(€22 =0)
(24 #0)

(Bryan & Norman 1998)

Here z = Q.. (t,i:) — 1. These equations are often used to " define' dark
matter haloes in N-body simulations or in analytical models....

The 30th Jerusalem Winter School in Theoretical Physics
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Summary: The Spherical Collapse (SC) Model

6 = p/p — 1 | turn-around | collapse

linear non-linear
=l

SC model

shell crossing
& virialization | |linear model

physical density

bound halo

Although SC model becomes
inaccurate (brakes down)
ke ~ shortly after turn-around it
T linear theory is still useful for identifying
WARNING __background important epochs in linearly
e density: @~ ° evolved density field...

| scale factor

— — ——————

, The linearly extrapolated density field collapses when é;;, = 6. ~ 1.

:

| Virialized dark matter haloes have an average overdensity of A
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Relaxation & Virialization

Relaxation: the process by which a physical system acquires equilibrium or returns to
equilibrium after a disturbance. Often, but not always, relaxation erases

the system's "knowledge" of it's initial conditions.

Virialization: the process by which a physical system settles in virial equilibrium

’ Virial Equilibrium: A system is said-T;J be in virial equilibrium if j

‘ IK+W+E =0 K = kinetic energy
W = potential energy

j Of1‘en, Y. can be ignor'ed, in which case > = work done by }
Lvir'ial equilibrium implies that £ = — K = W/2 surface pressure -

Two-body relaxation time: the time required for a particle to change its kinetic energy
by about its initial amount due to two-body interactions

N
As you learn in Galactic Dynamics, the two-body relaxation time, | relax = 10N Leross
n

Here N is the number of particles and tcross ~ R/v is the system's crossing time.

For almost all collisionless systems of interest to us (galaxies, dark matter haloes)
it is easy to show that ¢ e1ax > tHubble =~ 1/ H)

© Frank van den Bosch: Yale 201 2
[from F. Bosch]
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The Zel'dovich Approximation

So far we considered perturbations in Eulerian (" grid’) coordinates. Individual
overdensities stay at a fixed (comoving) position and grow or decay in amplitude....

We now switch to Lagrangian description, which follows motion of individual particles.
This gives insights into dynamics of structure formation process, and, unlike its
Eulerian counterpart, remains (fairly) accurate in the mildly non-linear regime...

’ It is easy to see that Eulerian de.scr'ip'ri;nﬁbr'ake.s down in mildly non-linear r-egime:ﬁ‘
¥ Once overdensities (§; > 0) reach amplitudes of order unity, the underdensities |
'L(di < 0 ) have grown to 6 < —1, which would imply a negative (=unphysical) density... l

Zel'dovich (1970) came up with a Lagrangian formalism that is based on the
following approximation (known as Zel'dovich Approximation, ZA):

— — ——————— - -

particles continue to move in the direction of their initial displacemen‘lj
=» (t) = & — cft) - f(F)

L~

Z; initial (Lagrangian), comoving coordinates
c(t) function of time, to be determined below

f'(a';'l) vector function of initial coordinates, specifying direction of velocity |
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The Zel'dovich Approximation

ZA: E(t) = Z — c(t) - (&)

the ZA is exact if perturbation is a 1D sheet in an otherwise homogeneous
universe; in that case direction of velocity remains fixed...

)

Mass conservation ‘
7 |
}

=

p(a—f) t) ( )d3$ — P1 331

S = .

Here a(t) is the scale-factor normalized to unity at the initial time t;: the scaling with
a®(t) is required since & are comoving coordinates. The equation of mass conservation
is valid (up to orbit crossing) for any geometry: no spherical symmetry is required!!

—
dz

Using Linear Algebra: | p(Z,t) = pi(&;) a3 -
Zi

Here ||A| = det(A) = H A; with )\; the eigenvectors of the matrix A

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch: Yale 2012
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The Zel'dovich Approximation

of;

we have that
8:13 k

d—}
Using that the tensor ( d:;) =0k — c(t) 3=
i/ jk

p(Z,t) = pi(F) a (1—ch1)(1—ch2) (1 —chs)

where A1 > A2 > A3 are the eigenvalues of the deformation tensor 9f;/0x;

Using that pi(fi) — ﬁi [1 == (Sl(fl)] s ﬁi and that ﬁ(t) a3 S ﬁi CLi3 this YIeldS

) = p(Z,t) _ 1
p(t) (1—cA1) (1 —che) (1 —cA3)

1+ 6(3, ¢

We can gain some useful insight from this equation (using that c(t) > 0):

(recall that g = 1)

— — ——

O if A; > 0 this implies collapse in the direction of the i* elgenvector

‘ o if \; < 0 this implies expansion in the direction of the i*" eigenvector.

LO if c(t) = 1/); " shell' crossing happens along the direction of the it" eigenvector. |

O as long as c\; < 1 the perturbation is still in the linear regime.

)

—

SP— L ——————ettecte
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The Zel'dovich Approximation

Linearization of the equation for the density perturbation yields

1
B 1—6()\1+)\2—|—)\3)

14 6(Z,¢) ~1+c(A1+ A2+ A3)

Hence, we have that, in the linear regime 6(z,t) = c(t) Te(V - f) =c(t)V - f
where we have used that the divergence of a vector field is a scalar.

If we compare this to the fact that, in the linear regime, §(Z,t)
we see that ¢(t) = D(t) and V- f = 6; .

Using the Poisson equation, according to which §; = V2®;/47Gp; (recall thata; = 1)
and the fact that V2® = V- V& , we finally see that f — Vo, /47 G p;

D(a) &. Zel'dovich Approximation

i :_’i_ i
() =2 47 G py
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Zel'dovich Pancakes

The ZA describes the non-linear evolution of density perturbations. It has two important

advantages over the spherical collapse model:

I'o it makes no oversimplifiea—&ésuﬁiptions about geometry i

{ © it remains accurate well into the quasi-linear regime .

" - ——

To understand why the ZA is more accurate in the quasi-linear regime (brakes down at a
later stage), have a look at its predicted evolution for an overdensity:

_ P(@,t) _ 1
ﬁ(t) (1 — C)\l) (1 — C/\2) (1 — C/\3)

1+ 8(Z, ¢)

It is clear from this equation that collapse happens first along the axis associated with
the first (largest) eigenvalue, \1 ™™ gravity accentuates asphericity!

Hence, collapse leads to flattened structures, called
(Zel'dovich) pancakes. The ZA approximation is so
accurate simply because, as mentioned above, it
becomes exact in the limit of planar perturbations...

Because ZA is so accurate, it is often used in setting up
the initial conditions for N-body simulations..
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Ellipsoidal Collapse

As is evident from the ZA, in general density perturbations will collapse according to:

’ overdensity sheet (pancake) filament halo }

For a uniform, ellipsoidal overdensity in homogeneous universe (ellipsoidal top-hat) one can
obtain analytical approximations for time evolution of its 3 principal axes (see MBW §5.3).

This can be used to compute the critical overdensity for collapse (of the longest axis =
“halo formation') in linear theory. The result can be obtained by solving

9 10.615
5&]

2
5SC

560

- Sheth, Mo & Tormen (2001)
5SC

~ 14 0.47 [5(62 + p?)

Here doc = dec(€, p) is the critical overdensity for ellipsoidal collapse, 6. = 6. ~ 1.686
is the critical overdensity for spherical collapse, and the plus (minus) sign is used if p
is negative (positive)....

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch: Yale 2012
[from F. Bosch]




Ellipsoidal Collapse

52 70615
eC] Ellipsoidal collapse

52
6SC

6_9" ~ 14 0.47 [5(62 + p?)

The parameters e and p characterize the asymmetry of the initial tidal field:

A1 — A3 A1+ A3 — 29
2(A1 + A2 + A3) P 2(A1+ A2 + A3)

€

Note that for a spherical system A\; = Ay =23 =) e=p=0 =) 0oc = 05c ~ 1.686

In general, however, \; > A2 > A3 which results in dec > 05 , which implies that
structures collapse later under ellipsoidal collapse conditions (more realistic) than
under spherical collapse conditions.

As a final remark, as we will see later, less massive structures are more strongly
influenced by tides and therefore more ellipsoidal...This has important implications....
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2. Halo number
density per Mass Bin



Now, we understand how a SINGLE non-linear structure (Halo) formed.

Our next task is to study the spatial distribution of those halos!

Press-Schechter Theory & Halo Mass Functions

In this lecture we discuss Press-Schechter theory, and its extension based on
upcrossing statistics of excursion sets. We show how these formalisms can be
used to predict halo mass functions, but also discuss its oversimplifications and
shortcomings.

Topics that will be covered include:

——

The Smoothed Density Field
Mass variance

Press-Schechter formalism

Extended Press-Schechter

Halo mass functions

®
®
®
O Excursions sets
®
®
®

Spherical vs. Ellipsoidal collapse

[from F. Bosch]



Smoothing

Given a density field §(Z), one can filter it using some window function (or “filter") W (Z; R)
which is properly normalized such that [ W (Z; R) d°Z = 1, to get a smoothed field

5(%; R) = / 5(F)W (% — ¥ R) &%

For each filter, one can define a mass M = ~; p R®, where ; is some constant that depends
on the shape of the filter. In what follows, we will characterize a filter intermittendly by
its size R or its mass M.

The above equation for the smoothed density field is a convolution integral (the density field
is convolved with the window function). Since convolution in real-space is equal to
multiplication in Fourier space, we have that

5(F; R) = / 5(%; R) e~ 3% = 6(F) W (kR)

where W (kR) = [ W (Z; R) e~*Z 437 is the Fourier Transform of the window function
for which we have made it explicit that k£ and R only enter in the combination kR.

[from F. Bosch]
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Window Functions

Throughout we will use either one of the following three window functions:

R—— - S | —

v¢ = 4m/3 |

3 e
4'7!'123 TSR k —
0 r>R MR

3

(kR)? sin(kR) — (kR) cos(kR)] |

v = (2m)3/2

_ 1
~ (2n)32R3 P\ 2R

e = 67

sin(r/R) — (r/R) cos(r/R)]  W(kR) ={(1) = }jﬁ

- | —

'}
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S’hOOth eq oy

The Variance of the Density Field Sty ficly

Recall that the assumption of ergodicity implies that (§ / 6(%) d°x

where V is the volume of the Universe over which we assume it to be periodic.

Similarly, we have that the variance of the density field can be written as
|
_V/ﬁ@&f

Recall that &(r) = (3(2)0(Z + 7)) = 3ry5 | P(k)eti*7d3k , from which it is clear that

o2 = £(0) = (2;)3 / P(k)d3k = = / P(k) k2 dk = / A%k)%

3

where A?%(k) = k—P(k) is the unitless power spectrum.
71'
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The Smoothed Density Field Q'e”Siz‘y fisly

Similar to case without smoothing, we define the variance of the smoothed density field as

o2(R) = (5(Z; R)) = # / P(k) W2(kR) k* dk

Note that limp_,g W(kR) = 1 (normalization condition), from which it is clear that
limg .0 0%(R) = 0 as required.

o - —
The cosmological parameterog is defined as the variance of the density field, linearly

extrapolated to z = 0 , when smoothed with top-hat filter of size R = 8h~'Mpc

I

‘ e = R = [i / Pin (k) W2y (kR) k? dk] 1/2

2772

|
| This parameter is used to characterize the normalization of the power spectrum.
It's currently favored value is of the order of 0g ~ 0.8 == 0.1 . A larger value of 0g ‘\

implies larger fluctuations, and therefore earlier structure formation...

et e ®

[from F. Bosch]
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Mass Variance

Since we can equally label a filter by its size R or its mass M, we can write 0%(R) = o%(M).
The latter is called the mass variance, and plays an important role in what follows.

It is straightforward to show that

R (T T

where M (Z; R) = Vg [ p(Z') W(& — &'; R) d°% , with Vg the volume of the filter,
and M (R) = (M (Z; R)), which exemplifies the nomenclature * mass variance'.

If §(Z)is a Gaussian random field, then so is §(Z; R). In particular

P(bu) o =

where we have used the shorthand notation 6 = 6(#; M) and oar = (M),

[from F. Bosch]
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The Linear Cosmological Density Field Sp""appr

According to linear theory, the density field evolves as 6(Z,t) = D(t) do(Z) OQC/;

Here do(Z) is the density field linearly extrapolated to ¢t = ¢, and D(t) is the linear
growth rate normalized to unity at ¢ = ¢,

5 halo halo halo
lin

| b

According to the spherical collapse model, regions with 6 (Z,t) > d. ~ 1.686 will have
collapsed to produce dark matter haloes by time ¢. In this lecture we examine how to

assign a halo mass to this structure. But first, we need to introduce some concepts...
oM F. Bosch]



How to Assign (Halo) Mass to Collapsed Regions?

We now return to our main question of interest:

—— ——————

] According to SC model, regions in the linear density field with 6 > d. have collapsedﬁ
" to produce virialized dark matter haloes. How can we associate a mass to those haloes,‘
; and how can we use the statistics of the linear density field to infer the halo mass !
qunc'rion, i.e., the (comoving) number density of haloes as a function of halo mass? ]

—

— — T ———

[ Let 6,1 be the linear density field smoothed on a mass scale M, ie., 6, — 6(%; R) |
t where M = ~; p R?, then those locations where 6,; = 6.(t) are the locations

\
"Lwher-e, at time ¢, a halo of mass M condenses out of the evolving density field.... }

In this case, the halo mass function simply follows from calculating the number
density of peaks in the smoothed density field, i.e.,

n(> M) = npk(dn)

number density of number density of peaks
haloes with mass >M above ¢ in density field
smoothed on mass scale M

[from F. Bosch]



Peak Formalism & Cloud-in-Cloud Problem

This idea was explored in a seminal paper by Bardeen et al. (1986), known as "BBKS".

THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS

J. M. BARDEEN'
Physics Department, University of Washington

J. R. BonDp!

Physics Department, Stanford University

N. KAIser'
Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge Universit

AND

A. S. SzaLAy'
Astrophysics Group, Fermilab
Received 1985 July 25; accepted 1985 October 9

ABSTRACT

Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima of
such fields are obvious sites for the formation of nonlinear structures. The statistical properties of the peaks
can be used to predict the abundances and clustering properties of objects of various types. In this paper, we
derive (1) the number density of peaks of various heights vo, above the rms a,; (2) the factor by which the
peak density is enhanced in large-scale overdense regions; (3) the n-point peak-peak correlation function in the
limit that the peaks are well separated, with special emphasis on the two- and three-point correlations; and (4)
the density profiles centered on peaks. To illustrate the predictive power of this semianalytic approach, we
apply our formulae to structure formation in the adiabatic and isocurvature €2 = 1 cold dark matter (CDM)
models. We assume bright galaxies form only at those peaks in the density field (smoothed on a galactic scale)
that are above some global threshold height v, & 3 fixed by normalizing to the galaxy number density. We
find, for example, that the shapes of the peak-peak two- and three-point correlation functions for the adiabatic
CDM model agree well with observations before any dynamical evolution, just due to the propensity of the
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to bring the
amplitude of the correlations up to the observed level. The corresponding redshift of galaxy formation z, in
the isocurvature model is too recent (z, = 0) for this model to be viable. Even for the adiabatic models z, >
3-4 is predicted. We show that the mass-per-peak ratio in clusters, and thus presumably the cluster mass-to-
light ratio, is substantially lower than in the ambient medium, alleviating the Q problem. We also confirm that

e smoothed density nrofiles of collapsing structures of height ~ v, are inherently triaxial

James Bardeen |

[from F. Bosch]



Peak Formalism & Cloud-in-Cloud Problem

This idea was explored in a seminal paper by Bardeen et al. (1996), known as "BBKS".

Using elegant, clever mathematics they were able to compute the number density,
clustering properties, shapes and density profiles of peaks in a smoothed Gaussian

random field (which i‘gself is alaso a Gaussian random field), all as function of the
peak height v = @% s (see MBW §7.1 for details)

oM

Unfortunately, it soon became clear that the identification

peak in dys <@=» halo with mass > M

faces a very serious problem:

Consider the same density field, but smoothed on two different mass scales, M; and
M5, where My > M;. Let dm be a mass element associated with a peak of §; = d(&; M)
but also with a peak of 3 = §(Z; M3). Is dm part of a halo of mass M; or M5 ?

O If 2 < 61the obvious interpretation is that dm is part of M; at some early time ¢4,
and part of My > M at some later time t2 > ©;.

O If §9 > 6, then dm can never be part of a halo with mass M;; apparently, contrary
to the "ansatz, not every peak in §; can be associated with a halo...

[from F. Bosch]



UP to now, we answered how a single spherical halo form.

Next question, how the halo distributed in the large scales?

smoothed density field on scale Ry,

5(%: Ry) = / &2’ W(|# — Z|; Rw)(&)
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Is this peak a part of A halo?
/




Smoothing with wider Window function




Smoothing with narrower Window function




Is this peak a part of A halo?
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Smoothing with wider Window function




Smoothing with narrower Window function
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S -
eM,R

S(R)=

F(M) = / °° P(6; R)d§ =rfc< %)

Excursion Set approach

o%(R) = (6%(Z; R)) = / dlnk A2(k)|W (k; R)|2

[Press & Schechter 1974]

v=0./0(R)

[Bond, Cole, Efstathiou, Kaiser, 1991]

The scaling relation of the filtered density field w.r.t. the smoothing scale,

Si

PS: only count A

EPS: also include B

Is like a (Brownian motion)
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ol _10°I1} equal probability
2 002

95~ @ every point

trajectory is memoryless!

@linear scale, different
k-mode are independent!



All the regions with 0 M > 5c , collapsed into a halo

Probability of i, > . 1s equal to the fraction of mass in a halo, with the halo mass > M.

The Press-Schechter Mass Function

Because of the cloud-in-cloud problem, the peak formalism of BBKS has largely been
abandoned in favor of the less rigorous, but more succesfull, Press-Schechter formalism

Press & Schechter (1974) postulated that:

R ——————

z “the probability that d5s > d.(%) is the same as the mass fracﬁonﬁx

| that at time ¢ is contained in halos with mass greater than M*

For a Gaussian random field, one has that

1 [ 52, 1 5
P((SM > (5(;) = \/%O_M Ac exp [—E] ddM = éerfc [E]

Here erfc(z) = 1 — erf(x) is the complimentary error function, and we consider it
understood that §. = 6.(t). According to the PS postulate, we thus have that

e Mt = %erfc [2(201\4]

sincelimj,;_,o oy = oo and erfc(0) = 1 we see that the PS postulate predicts
that only 1/2 of all matter in the Universe is locked-up in collapsed haloes...

[from F. Bosch]



The Press-Schechter Mass Function

We are now ready to write down the PS halo mass function:

f We define the mass function as n(M, 1) dM, which is the number of haloes with masses
Lm the range [M, M + dM] per (cornovmg) volume. Hence, n(M,t) = &% = M .

Bewar'e of units and different notatio

We have that QE£—>M£) dM is equal to the fraction of mass that is locked up in

haloes with masses in the range [M, M + dM]|.

Multiplying by p yields the total mass per unit volume that is locked up in those haloes.
Hence, the halo mass function is simply given by n(M,t) dM = ]Cf 8F(,()LM) dM

Using the Press-Schechter ansatz plus fudge factor we thus obtain:

_ 2
5 P OP(> ) AM — 2 p O exp (_ 0; ) 'dlnaM dM

M =
A, ) M oM T M2 oy 202, ) |dIn M

where we have used that 0P /0OM = 0P /0o p X |dop/dM]|.

[from F. Bosch]




The Press-Schechter Mass Function

Upon defining the variable v = d.(t)/o (M) the PS mass function can be written in a
more compact form:

/L* n(M,t)dM = %fps(l/) (flgl]\i[ dM where fps(v)= \/z

fps(v) is called the multiplicity function and gives the mass fraction associated with
haloes in a unit range of 1n v. Note that time enters only through d.(t) ~ 1.686/D(t)

some authors define v = 62(t)/o*(M) which results in a somewhat
modified multiplicity function.....always check how v is defined!!

If we define a characteristic mass, M* by o(M™) = d.(t) (i.e., by v(M™) = 1) then:

© For M < M* we have that n(M,t) c M* %, where a = dlno/d1n M,
For a CDM cosmology o: — 0 at low mass end so that n(M) oc M2

O For M > M™ the abundance of haloes is exponentially suppressed.

O Since 0.(t) decreases with time, the characteristic halo mass grows as function
of time; as time passes more and more massive haloes will start to form...

[from F. Bosch]



The Excursion Set Formalism

Bond et al. (1991) came up with an alternative derivation of the halo
mass function that does not suffer from a " fudge-factor problem’

EXCURSION SET MASS FUNCTIONS FOR HIERARCHICAL GAUSSIAN FLUCTUATIONS{ !

J. R. Bonp,' S. CoLg,?> G. ErsTATHIOU,?> AND N. KAISER'
Received 1990 July 23; accepted 1990 December 28

ABSTRACT

Most schemes for determining the mass function of virialized objects from the statistics of the initial density
perturbation field suffer from the “cloud-in-cloud™ problem of miscounting the number of low-mass clumps,
many of which would have been subsumed into larger objects. We propose a solution based on the theory of
the excursion sets of F(r, R,), the four-dimensional initial density perturbation field smoothed with a contin-
uous hierarchy of filters of radii R,. We identify the mass fraction of matter in virialized objects with mass
greater than M with the fraction of space in which the initial density contrast lies above a critical overdensity
when smoothed on some filter of radius greater than or equal to R (M). The differential mass function is then
given by the rate of first upcrossings of the critical overdensity level as one decreases R, at constant position
r. The shape of the mass function depends on the choice of filter function. The simplest case is “sharp k-
space” filtering, in which the field performs a Brownian random walk as the resolution changes. The first
upcrossing rate can be calculated analytically and results in a mass function identical to the formula of Press
and Schechter—complete with their normalizing “fudge factor” of 2. For general filters (e.g., Gaussian or “top
hat”) no analogous analytical result seems possible, though we derive useful analytical upper and lower
bounds. For these cases, the mass function can be calculated by generating an ensemble of field trajectories
numerically. We compare the results of these calculations with group catalogs found from N-body simulations.
Compared to the sharp k-space result, less spatially extended filter functions give fewer large-mass and more
small-mass objects. Over the limited mass range probed by the N-body simulations, these differences in the
predicted abundances are less than a factor of 2 and span the values found in the simulations. Thus the mass
functions for sharp k-space and more general filtering all fit the N-body results reasonably well. None of the
filter functions is particularly successful in identifying the particles which form low-mass groups in the N-body
simulations, illustrating the limitations of the excursion set approach. We have extended these calculations to
compute the evolution of the mass function in regions that are constrained to lie within clusters or under-
densities at the present epoch. These predictions agree well with N-body results, although the sharp k-space
result is slightly preferred over the Gaussian or top hat results.

Subject headings: cosmology — galaxies: clustering — numerical methods

[from F. Bosch]
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S(R)=

F(M) = / °° P(6; R)d§ =rfc< %)

Excursion Set approach

o%(R) = (6%(Z; R)) = / dlnk A2(k)|W (k; R)|2

[Press & Schechter 1974]

v=0./0(R)

[Bond, Cole, Efstathiou, Kaiser, 1991]

The scaling relation of the filtered density field w.r.t. the smoothing scale,
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The Excursion Set Formalism

Three trajectories
corresponding to
three different
mass elements ina
Gaussian random
field. Note that ' is
obtained mirroring
trajectory 2 in the
line g = d. for

S > S2. Since the
trajectories are
Markovian * and
are equally likely!

Consider 0o (%) smoothed on a mass scale M corresponding to S1 = o*(M;)

According to PS ansatz, mass elements whose trajectory s > 0. at Sireside in
dark matter haloes with mass M > M; = neither -~ or ' are in halo with M > M;

according to same PS ansatz, mass element associated with trajectory
=~ _ resides ina halo with M > M, > Mj;: PS ansatz is not self-consistentl!!

S
[from F. Bosch]




The Excursion Set Formalism

In the excursion set formalism , also called the Extended Press-Schechter (EPS)
formalism, one uses the (statistics of) Markovian random walks (the trajectories of
mass elements in (S, §s)-space) to infer the halo mass function (and more).

| fraction of mass elements with dg > 0c(t) is equal to the mass |
PS ansatz: }fraction that at time ¢ resides in haloes with masses > M, ‘
'Lwher'e S and M are related according to S = (M) J‘

S— —— ——————

’ fraction of trajectories with a first upcr'ossmg (FU) of the

EPS ansatz: \barrier 65 = &.(t) at S > S1 = 9°(M,) is equal to the mass
Lfr'ac'ﬂon that at time ¢ resides in haloes with masses M < M,

Since, each trajectory is guaranteed to upcross the barrierds = 6.(t) at some
(arbitrarily large) S, the EPS ansatz predicts that every mass element is in a halo

of some (arbitrarily low) mass

F(<M1)=1—F(>M1)

[from F. Bosch]



The EPS Mass Function

Based on the EPS ansatz, we can write the EPS mass function as:

p OF(> M) qaM =P OF (< M)
M oM - M M

_ P OFry(>S) dS
M oS dM

n(M,t)dM = dM

] as

Here fruy(S,dc)dS is the fraction of trajectories that have their first
upcrossing of barrier{.(t) between S and S + d&S.

1 O
— o7 P [__

where, as before, we defined v = §.(t) /o (M) = 6./v/S and we expressed the
result in terms of the PS multiplicity function fpg(v) = 1/2/m v exp(—v?/2)

Without proof: | fry(v) =

52 |
c ] _ ﬁfPS(V) (see MBW §7.2.2

for derivation)

It is straightforward to show that this yields exactly the same halo mass function
as before, but this time there has been no need for a fudge factor....

[from F. Bosch]



3. Halo Bias



n(M) Halo mass function gives the mean number density in the range of (M ~ M +dM)

Modulation of the LONG wavelength

Linear Halo bias 0,, =(1+0)-0, to the local density peak

halos
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4. Halo concentration

Up to now, we assume top-hat density profile.
Next, we want a more realistic modelling!



Halo concentration . - §pm (1) = Ps
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Merger Tree



Beyond a Halo Mass Function..."™™ " 2°="

An important advantage of EPS over PS is that the excursion set formalism provides
a neat way to calculate the properties of the progenitors which give rise to a given
class of objects (i.e., haloes of a given mass).

For example, one can calculate the mass function at z=5 of those haloes (progenitors)
which by z=0 end up in a massive halo of 10" solar masses.

These progenitor mass functions, in turn,
can be used to describe how dark matter
haloes assemble over time (in a statistical
sense); in particular, they allow the
construction of halo merger trees.

These merger trees are invaluable tools
in galaxy formation studies...

Tllustration of a merger tree depicting the
growth of a dark matter halo as a result of a
series of mergers. Time increases from top
to bottom and the width of the tree beaches
represents the masses of the individual | DT L L L
progenitors...

Source: Lacey & Cole, 1993, MNRAS, 262, 627

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch: Yale



Consider a spherical region (a patch) of mass Ms, corresponding to a mass variance

Sy = 0?(M>) with linear overdensity 05 = d.(t2) = 0./ D(ts) so that it forms a
collapsed object at time ?».

We are interested in the fraction of M-, that at some earlier time t; < t5 was in a
collapsed object of some mass M.

Within the excursion set formalism this means we want to calculate the probability that
a trajectory that upcrosses barrier d5 at So has its first upcrossing of barrier 1 = d.(t1)
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Progenitor Mass Function
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Merger Trees

The progenitor mass function allows one to construct halo
merger trees using the following algorithm:

— e —

H For a given host halo mass, 11, , and a given time step,
At , draw a set of progenitor masses from the
progenitor mass function n(M,,tg + At|My,t)

The progenitors must obey the following fwo conditions:
O accurately sample the progenitor mass function

| O mass conservation: Y M, = M
For each progenitor, repeat above procedure, thus
stepping back in time.

Sounds easy.....is not...

Several different methods have been suggested to
contruct halo merger trees; none of them is perfect......

ASTR 610:Theory of Galaxy Formation
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