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18 weeks outline
Background (1 w)

- universe geometry and matter
components (1 hr)

- Standard candle (SNla) (0.5 hr) Non-linear perturbation (6 w)

- Standard ruler (BAO) (0.5 hr) - Non-linear power spectrum (2 hr)

Linear perturbation (9 w) - halo model (2 hr)

- relativistic treatment perturbation (2 hr) - N-body simulation algorithms (2 hr)

- primordial power spectrum (2 hr) - Press-Schechter (PS) halo mass function (2 hr)
- linear growth rate (2 hr) - Extended-PS (EPS) halo mass function (2 hr)

- galaxy 2-pt correlation function (2 hr) - halo bias & halo density profile (2 hr)

- Baryon Acoustic Oscillation (BAO) (2 hr) Statistical analysis (2 w)

- Redshift Space Distortion (RSD) (2 hr) » Monte-Carlo Markov Chain sampler (2 hr)

- Weak Lensing (2 hr) « CosmoMC use (2 hr)

- Einstein-Boltzmann codes (2 hr)



our telescope can only
receive light signal.

we can only measure
the luminous matter distribution






dark matter distribution
via lensing reconstruction

X-ray emission from hot gas
(baryon/luminous matter)




Major task of this lecture is to
study how to use the galaxy

as the proxy of the total

matter distribution!
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Cosmic density field

For a given cosmology, the density field at a cosmic time ¢, is described by

o(x,t) or Ok(z).

How to specify a linear density field? to specify o(x) for all x or to specify ok for
all k? NO!

e We consider the cosmic density field to be the realization of a random process,
which is descibed by a probability distribution function:

Tx (81,82, *c '76N) d51 d62 ce dBN, (N — oo)

Thus, we emphsize the properties of 2, rather than the exact form of 6(x).

<op>

[from Houjun Mo]



e The form of 2, (81,0,,---,0y): is determined if we know all of its moments:
<5f15§2- .. 5,‘3V> = / 8182 - - SN P(81,8,,- -+, 8y) dS; dS, - - - By,

where (41,4,---,4y) =0,1,2,---.

In real space:
(8(x)) =0, &(x)=(0;0;), where x=|x;—Xx||.

In Fourier space:

B =0, P(k)=V(I?) = Vi (i3 1) = [ E)exp (ik-x) &,

In general, it is quite difficult to describe a random field.

<op>

[from Houjun Mo]



Gaussian Random Fields

¢ In real space:

P(5,.8,,---.8,) = xp(-Q) . H_lyg g 5,
(01,02,7+,5) [(2m)det(M)]"/ * 22} ;%

where M;; = (9;0;). For a homogeneous and isotropic field, all the multivariate
distribution functions are invariant under spatial translation and rotation, and
so are completely determined by the two-point correlation function &(x)!

<op>

[from Houjun Mo]



e |In Fourier space:
O = Ax +iBx = |6k| GXp(i(pk).

Since d(x) is real, we have Ax = A_x, Bx = —B_g, and so we need only Fourier
modes with k in the upper half space to specify 6(x). It is then easy to prove
that, for k in the upper half space,

1
(AkA) = (ByBy) = 5vu—lp(k)zsfj;?; (AxBi) = 0,

Thus As a result, the multivariate distribution functions of Ay and By are
factorized according to k, each factor being a Gaussian:

1
[chu_lp(k)]lﬂ CXp [_Vu_lp(k):| d(xka

T((Xk) d(Xk =

<op>

[from Houjun Mo]



In terms of |0 and ¢k, the distribution function for each mode,
?(Ak)?(Bk) dAyx dBy, can be written as

|8k|2 ] |0k | d|Ok | dpic

?(|8k|7(pk)d|8k|d(pk — €Xp [_ZV_lP(k) V_IP(k) I

Thus, for a Gaussian field, different Fourier modes are mutually independent,
so are the real and imaginary parts of individual modes. This, in turn, implies
that the phases ¢ of different modes are mutually independent and have
random distribution over the interval between 0 and 2.

P(k) is the only function we need!

Pk : is uniformly distributed between 0 and 2pi

<op>

[from Houjun Mo]



Although power spectrum can NOT tell us ALL the statistics, still it is informative

&Pk 7=
A [ —> k A -
real gauss | 3(F) = 2 e"”'*5; «— complex gauss random field
random field (27)
o0
. _ 27T 7.
— llm L 3€Z L mS 277
L—o0 L
n=——~oo

power spectrum only give us the info encoded in Amplitude

(k) ~ A(ié)ei%

Loss info encoded in the phase!
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: : inside of horizon
inflation ( growth function)

\ ;
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University of
Portsmouth

Perturbation statistics: correlation function

overdensity 5 = p—
field P

definition of

correlation function
from statistical

§(x1,x2) = (0(x1)d(x2) omogenei
_ g(xl—xz)(/h geneity

X1 — X
s 2 D\ from statistical

1sotropy

can estimate correlation uniformly distributed

function using galaxy (DD) /
and random (RR) pair counts \> 14 £(r) = DD)r random sample

at separations ~r (RR)y




e " Perturbation statistics: power spectrum

University of
Portsmouth

definition of
power spectrum

(8(k1)d(ks)) = (27)35p(ky — ko) P(k1)

power spectrum is the Fourier analogue of |
the correlation function sometimes written in

dimensionless form

P(t) = [e(r)erads A2(k) = 2P

— —ik.r d>k
€)= [Pl oSS




s '. Correlation function vs Power Spectrum

University of
Portsmouth

The power spectrum and correlation function contain the same
information; accurate measurement of each give the same
constraints on cosmological models.

Both power spectrum and correlation function
can be measured relatively easily (and with
amazing complexity)

The power spectrum has the advantage
that different modes are uncorrelated (as a
consequence of statistical homogeneity).

Models tend to focus on the power
spectrum, so i1t 1s common for
observations to do the same ...



P,,(k)=\P,.(k)T" (k)D*(a)|b+ fu’ ]

A

bias RSD
anisotropic

ini

transfer function
(outside of horizon)

Isotropic
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: : inside of horizon
inflation ( growth function)

\ /

P (K)= B, (T ()D* (@b + f 1T
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peak-background split Dark matter Galaxies (~10%K)

galaxy: discrete distribution
matter: smoothed distribution

galaxies

3 —————— 7
j \Enhanced

"Peaks"

What is the underline
matter density distribution?




peak-background split

1. qualitatively,

galaxy distribution , |

can mimic underline
matter distribution

2. quantitatively,
they are not

coincide! OF

need introduce
a bias factor!

5, =b+5,

galaxies

|
WI 5 !

1

Enhanced
"Peaks"

f

‘-a

|

' l e
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[from W. Hul]



stellar-halo mass relation ] ] ]
typically, single galaxy can only contribute

12 | | , | 1%~10% mass to gravitational potential
11 _
s0, we can treat the single galaxy
10 / as a probe particle
®
= :
\* 9 | ‘ 1 12
;i | M™EE ~107 M
S g |
| .
, | ] Mmllkywaystellar ~1 010 M@
M : . . .
. o ! . | Q: if all the baryon is localised in galaxy,
610 11 12 13 14 15 milkyway stellar mass shall be ~2.5E11
log(My/M)

A: a large mount of the baryon (gas) is spread in Inter Galactic Medium.

Galaxies expected to be (almost) unbiased tracers

of the cosmic velocity field (but not the density field).

The reason why galaxy density field is biased w.r.t. real matter density:

galaxy formation process, is not only driven by gravity, but also by complicated baryonic
dominated mechanism, such as AGN feedback, SN explosion, etc. These process is very hard to model!

Once the galaxy is formed, its motion is only driven by the gravity, due to we can treat it as a test particle.

Motion of galaxies is independent of galaxy properties, galaxies act as test particles in flow of matter



Probed by X-ray.  Baryon Census (low-z)
lines, broad Ly

Both of these
are uncertain

IGM Systematics:

A el oh - U4 _EUV radiation field
' - Oxygen metallicity
- loniz corrections
- Cloud geometry

A Search for Warm/Hot Gas Filaments Between Pairs of SDSS
Luminous Red Galaxies

Hideki Tanimura,'* Gary Hinshaw, >3 Ian G. McCarthy,* Ludovic Van Waerbeke, 2
Yin-Zhe Ma.> Alexander Mead.! Alireza Hoiiati! and Tilman Troster!




time evolution of the bias
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semi-analytic galaxy formation model

complicated interaction, can not calculate

from Q. Guo] ?r*é}k analytically need simulation! (expensive!)
2 AH A
N
"o A PR N-body simulation (only CDM, purely gravity)
Cax |
Add hot/cold gas, bh, star, etc. on top of N-body
AR T
i, T35 H
A, 257 '
BRGEEHE .
ennea [oane]



: : inside of horizon
inflation ( growth function)

\ ;

P (K)= B, (T ()D* (@b + f 1T

RSD
anisotropic

transfer function bias
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Isotropic



Redshift Space Distortion

Redshift measures a combination of “Hubble
recession” and “peculiar velocity”.

Upec

aH

Uobs — Hr + Upec = Xobs = Xtrue

two type of peculiar velocity (coherent or random)

non-linear
structure

linear flow

Actual
shape

>

Hubble flow

Apparent
shape
(viewed from
below)

2

Kaiser effect Finger of God [from W. Percival]




between halos
super-cluster infall

Kaiser effect

The Kaiser Effect describes the peculiar velocities of galaxies bound to a central mass as they undergo infall.
This differs from the Fingers-of-God in that the peculiar velocities are coherent, not random, towards the central mass

linear flow This effect can only be detected on large scales

subhalo

mass center

O




DM fluid )
VO(t,x)
a

i+ 2 Hii (%) =

Q [ooy

g(ta-;é):_

VO(t,X)=4rnGa’pd  (t,X)

in MD epoch  0(¢,X) = D(t)+ 0(¢,,X) q)(t,l}')=—4nGa2pD(t)5(22’k)
- Dk _ p B
g(t,k)=—ik GLY = z47rGapD(t)P5(ti,k)
a
p(t,x)= p(1+0(t,X))
Eulerian coordinate T /_)(1 T 5(t,f))d3x — /_)d3x,4— Lagrangian coordinate
ox"
1+0(,%X)= _
J ) (t.5)=|=
”
A solve the above, we get
o0 d
Col f v
. ¥ =%+ D() =7 81, %)

.V -
¥=0 V=D(0)5700;%) 56 = #(0)



We know, in the Eulerian frame, the density field satisfy

—

i+ 2Hi (%) =2 sy = YD)
a a

VO(t,x)=4nGa’pé, (t,X)

in MD epoch o(t,X)=D(t)+6(,,%) ®(t,§)=—4nGazpD(t)5(Z;k)

D+2HD-4rnGpD =0

You can prove that the velocity field in the Lagrangian frame (t)=X'(¢)

Is identical to the fluid velocity field in the Eulerian frame U (t ,55 )

—

V= D(t)%&ti,)?)

u(t,x)=v(t)



under Zeldovich approximation, each individual particle travels straight line!

Eulerian frame

A/ I

Lagrangian frame

A
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The Area Differential Jacobi determinant in the coordinate transformation

Let T (u,v) be a smooth coordinate transformation with Jacobian J (u,v) , and
let R be the rectangle spanned by du = (du,0) and dv = (0,dv) . If du and dv
are sufficiently close to 0, then 7" (R) is approximately the same as the parallel-
ogram spanned by

dx = J(u,v)du= (z,du,y,du,0)
dy = J(u,v)dv = (x,dv,y,dv,0)

If we let dA denote the area of the parallelogram spanned by dx and dy, then
dA approximates the area of T' (R) for du and dv sufficiently close to 0.

V Y
J
e CTTa
5 av g dy QA rea=dA
du &
p i X
The cross product of dx and dy is given by
dx x dy = <O, 0, Tu z” >dudv
from which it follows that
dA = ||dx X dy|| = |zuwY» — ToYu| dudv (2)
Consequently, the area differential dA is given by
0 (z,y)
dA = |8(u,'v) dudv (3)

That is, the area of a small region in the uv-plane is scaled by the Jacobian
determinant to approximate areas of small images in the zy-plane.



—

density field at Eulerian coordinate X X=X+ D(t)lz5(ti ,X)
Vv

p(%)d% = pdi’

. - xX=x —D(t) G

D
5,— DY, _9°0(1,,X)
' 0x[0x]

o(t,,x")
0x’

0x

0X

ox’

p(x)=p

=p

J v

tidal shear tensor
If eigenvalues are 4, <A, <4,

Zeldovich Pancake

p
(1= DA,)1- DA,)(1- DA,)

p(x) =

The over density region will first collapse
to a pancake along the A, axis




—

L, - \% .
X'—X= D(t)€5(ti,x)

L, Vo .
x'=x+D(t)€5(ti,x) AT =
. @ displacement field ‘

v=D{t)—0(t. X
( )V2 ( i ) ./55,
v = Hf AX o
dlog D
growth rate: [ = 5 . Q *:(ACDM)
dloga —

r R N

a galaxy at X in real space, corresponds to § in redshift space |s5=x+ XI;V be
B ~ 9 y
=Hx,, +Vv,
only the LoS

Vobs
component contribute

Hx , = Hs
to the redshift measurement

f N
<l

line of . gight




[ )
L . XeVa Follow the above prescription
s=X+ X o o

. H ) p(x)dx = p(s)ds

V 140" (X))dx =(1+0°(s))ds
s bt 50,5 (148" (¥)d = (1+ 8" (5))ds

—

S _ Voo 1+6°(t,x)-1J | Js’
= Hf « D(¢) 25(ti’x) S(+ Q) = > 1] |I= S.
v 0°(1,5) Wi -
;= +f<r>D<r>"(x ) 50,003
J=195% =15, +f(t)D(t)_l(x k)( ik )& (8, k)%, b ke =U
L axi J L J inclination angle between wave mode

direction l’{‘ and LoS direction -
Det|J| =1+ fu’DS(t, k) =1+ fu’S™(t,k)

/\ — \\
[ 03— anisotropic

isotropic | 5*(¢,k)=6"(t,k)(1+ fui’

Kaiser formula  (Kaiser, 1987, MNRAS, 227, 1)



obs

20

0

-20 0 20
Separation on the sky, G (Mpc/h)

Separation along the line of sight, 7T (Mpc/h)



t " what do linear z-space distortions measure?

University of
Portsmouth

linear scales,
0q(14)
Py (p)

59 4+ ,LL29 p = cos(a)
(|9g + u6%)
Pyg + 2,U2P99 + ,U4P00

Galaxy-galax;{we'r / Velocity-velocity power

Galaxy-velocity divergence cross power

¢ = V-u

In linear regime,

dln G _
0= —fé(mass), f - dlna \
Linear growth rate

so amplitude of power spectrum constrains

(03)? = [bog(mass) + p” fog(mass)]?

Kaiser 1987, MNRAS, 227, 1



within a halo
FoG

The Fingers-of-God effect 1s attributed to random velocity dispersions in galaxy clusters that
deviate a galaxy's velocity from pure Hubble flow, stretching out a cluster in redshift spacN

small-scale

non-linear
Random (thermal) motion structure

stretc.

no effect on perpendicular direction

(fingers-of-god)

LoS

Since All is God, evolution is the process in which God creates. -
Evolution is the creation of all things. Creating is how things evelve,
Evolution and creation are one and the same.

But The Absolute is changeless, and form is an egoic illusion,

. The TruthsOfLife.com



Fingers-of-god

So far we have neglected the motion of particles/
galaxies inside “virialized” dark matter halos.

These give rise to fingers-of-god which suppress
power at high k.

Peacock (1992) 1st modeled this as Gaussian “noise’
so that

— Ps(k, w)= P(k) [b+fu?]* Exp[-k*u“o?]

Sometimes see this written as P +Ps,+P,, times
Gaussians or Lorentzians.

— Beware: no more general than linear theory!

[from M. White]



)e
e Redshift space distortions

University of
Portsmouth

At large distances (distant observer approximation), redshift-
space distortions affect the power spectrum through:

Ps = Pr(1 4 Bp?)?(1 + k2p?og/2) 71

A

Large-scale On small scales, galaxies lose all
distortion can also knowledge of iitial position. If pairwise
be written 1n terms velocity dispersion has an exponential

of B=t/b distribution (superposition of Gaussians),

then we get this damping term for the
power spectrum.

[from W. Percivall



Legendre expansion

Rather than deal with a 2D function we frequently expand the
angular dependence in a series of Legendre polynomials.

The Rayleigh expansion of the plane-wave related the moments
In k-space and r-space:

) k3Pk
A2(k k- 3) = ) ZAg

i) = Y EnLdi-2) , &lr) = / = A3 (k)je(kr)
£

If we use recurrence relations between j, we can write g, in terms
of integrals of £ times powers of r. e.q.

3

T A Wakr) = 5 [ 5ds ¢(6)— () = E(< 5) €9

k



Legendre expansion

Note that the ratios of the moments is independent of k but not of
r.

The Kaiser formula involved only terms up to u4, so on large
scales (ko<<1) this series truncates quite quickly.

A3 (k) b? + 2bf + 1 f?
A3(k) | =A%k) | 3bf + 5/
A4 (k)

Typically only measure (well) /=0, 2.



Kaiser 1s not particularly accurate
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Alcock-Paczynski Test

AP (I)

Alcock & Paczynski (1979),

An evolution free test for non-zero
cosmological constant,

Nature 281, 358

A pure geometric probe of the
cosmic expansion history,

by measuring shapes of objects
which are known to be 1sotropic.

If we adopt an incorrect cosmology
to measure these objects,

they appear stretched/elongated in

the line-of-sight (LOS) direction.

[from X.D. Li]

An evolution free test for
non-zero cosmological constant

Charles Alcock

The Institute for Advanced Study, Princeton, New Jersey 08450

Bohdan Paczynski*

Department of Astronomy, University of California at Berkeley,
Berkeley, California 94720 and Princeton University Observatory,
Princeton, New Jersey 08540

The cosmological constant has recently been questioned
because of difficulties in fitting the standard A = 0 cosmological
models to observational data’”. We propose here a cosmologi-
cal test that is a sensitive estimator of A. This test is unusual in
that it involves no correction for evolutionary effects. We
present here the idealised conception of the method, and hint at
the statistical problem that its realisation entails.



AP (II)

Considering some objects in the Universe which 1s known to be 1sotropic.
We are measuring its redshift span Az and angular size A6

Adopting a certain cosmology we calculate its
sizes 1n the radial and tangential directions: Az

Ary = =Az, Ary = (1+2)Da(2)A6

[from X.D. Li]
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— Wrong cosmologies adopted to calculate (z) — Anisotropy
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— Note the cosmological dependence and redshift dependence!

[from X.D. Li]




u from Mock (pure AP)

NO RSD

z=0.17-1.0

z2=1.0-1.4

Correct Cosrriolody
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[from X.D. Li]
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— Correct Cosmology: uniform
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u from Mock (AP+RSD)

With RSD o :
2=0.17-1.0 2=1.0-14 0, = (t —0.5) X 10°
11 Correct Cosmology Vo /..J
L. seseses®e® “-../D.Ol...’..‘.‘...
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FurtherReading:

Large Scale Structure Observations
https://arxiv.org/abs/1312.5490

Will Percival @ ICG, Portsmouth

BAO
http://mwhite.berkeley.edu/BAO/bao_iucca.pdf

RSD
http://mwhite.berkeley.edu/Talks/SantaFe12_RSD.pdf

Martin White @ UC Berkeley



