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18 weeks 

Background (1 w) 

•universe geometry and matter 
components (1 hr)


•Standard candle (SNIa) (0.5 hr)


•Standard ruler (BAO) (0.5 hr)


Linear perturbation (9 w) 

• relativistic treatment perturbation (2 hr)


•primordial power spectrum (2 hr)


• linear growth rate (2 hr)


•galaxy 2-pt correlation function (2 hr)


•Bayron Acoustic Osciilation (BAO) (2 hr)


•Redshift Space Distortion (RSD) (2 hr)


•Weak Lensing (2 hr)


•Einstein-Boltzmann codes (2 hr)


Non-linear perturbation (6 w) 

•Non-linear power spectrum (2 hr)


•halo model (2 hr)


•N-body simulation algorithms (2 hr)


•Press-Schechter (PS) halo mass function (2 hr)


•Extended-PS (EPS) halo mass function (2 hr)


•halo bias & halo density profile  (2 hr)


Statistical analysis (2 w) 

•Monte-Carlo Markov Chain sampler (2 hr)


•CosmoMC use (2 hr)

outline
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1. Gaussian Random Field/ Power 
spectrum/Correlation function/ Phase 
2. BAO 
3. Galaxy Clustering 
4. RSD 
5. Lensing: WL/ Strong Lensing 
6. Linear Growth 
7. Nonlinear growth (spherical collapse) 
8. Halo model: Press-Schesther 
formalism, merge tree 
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Lecture 1

1.cosmological principle/CP

For a co-moving observer, on the large scale, 

the universe is homogenous and isotropic.

1. Observer: co-move with the background expansion

[ milky way ~ 15kpc, 

1pc ~ 3 ly ]

5 Mpc

26 Mpc

100 Mpc

2. On this scale (> 1 Mpc): 

each galaxy is l


ike a test particle

non-relativistic matter distribution

relativistic

photon 


distribution



Galaxy clustering



2. FRWL metric

ds2 = −dt 2 + a2 (t)[ dr2

1− K(t)r2
+ r2dθ 2 + r2 sin2θdϕ 2 ][c=1]

3 spatial curvature

K(t) =
> 0→ (close)
0→ ( flat)
< 0→ (open)

⎧
⎨
⎪

⎩⎪

a(t) [scale factor 标度因⼦子]: tells the physical size of the universe.  

cosmic redshift: a = 1/ (1+ z) z = 1/ a −1or with a0 = 1, z = 0

[ds2 = gµνdx
µdxν ] gµν describe the d.o.f. gravity sector

similar to: E/B field in Maxwell eq.

covariant 

format
Fµν

;v = J
µ

[Friedmann–Robertson–Walker-Lemaître] 



[Baumann lecture note]
[http://101.96.8.165/www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf]

ds2 = −dt 2 + a2 (t)[ dr2

1− K(t)r2
+ r2dθ 2 + r2 sin2θdϕ 2 ]

du2

dv2

dv = a du

here, du = 1, but dv increase w.r.t. time

(co-moving)

(physical)

http://101.96.8.165/www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf


physical meaning of FRWL metric:

the only metric compatible with the cosmological principle!

ds2 = −dt 2 + a2 (t)[dr2 + r2dθ 2 + r2 sin2θdϕ 2 ]e.g. flat case isotropic

ds2 = −dt 2 + a2 (t)δ ijdx
idx j homo

coordinate      transformation

For a co-moving observer, on the large scale, 

the universe is homogenous and isotropic.

[ds2 = gµνdx
µdxν = !gµνd!x

µd!xν ]

iso/hom is purely geometry property of the space-time, so it does NOT depends on the coord. 
But, some properties are more easily demonstrated in some specific coordinates.

(rotation symm.)

(spatial shift symm.)

More importantly, FRWL metric defines a unique clock with time coordinate ’t’

All the observers, who satisfy the CP, have to co-move with this clock

This is because, up to now, we only use the 

geometric/symm. property of the space-time

Metric theory

General  
Relativity

Modified  
GravityIn order to fix a(t), we need to solve  

the dynamical equation of gravity sector

Now, the metric is fixed up to a function of ’t’, namely a(t) 

Gµν = 8πGTµν GR: f(R ) gravity:e.g. 



3. Friedmann eq.

Gµν = 8πGTµν Einstein eq.

gravity sector 

(Geometry of space-time) matter sector


(stress-energy tensor)

(EoM of gravitational d.o.f.)

gravitational 

coupling constant

Spacetime tells matter how to move; 
matter tells spacetime how to curve

John Wheeler

need a lots of energy to bend the space-time!

4-velocity relative 

to the obs

∇µT
µν = 0 energy-momentum conservation eq.

(EoM of matter)

-
+

+
+

model cosmic matter distribution  
by the fluid approach!



Gµν = 8πGTµν
Einstein tensor

Ricci tensor

Ricci scalar

connection/Christoffel symbol

containsGµν (gµν , !gµν , !!gµν )

Classical dynamics tell us: a canonical dynamical system, 

shall at most contain the 2nd order time derivative of its dynamical variables. 

good! does not need acceleration of acceleration

However,               is a non-linear functional. Gµν (gµν ) bad! very hard to solve

e.g. for merger stage of binary black hole system, EE is very very hard to solve!

EE is written @1915, but the first bbh solution is got @2005

ds2 = −dt 2 + a2 (t)δ ijdx
idx jFor FRWL metric:

[Pb1.] R00 = −3 !!a
a

Rij = [a!!a + 2 !a
2 ]δ ij

1st Friedmann eq.

2nd Friedmann eq.



U µ = (−1,0,0,0)For a co-moving obs: For a perfect fluid:
-

+
+

+
T µ

ν =
We need:

Not 
independent 

with each other
[Pb2.] Check the relationship 


between 1st & 2nd Friedmann eq.

∇µT
µν = 0

Besides the conservation eq. we also  
need the thermal dynamical info of the fluid

e.g. Equation of State w = P / ρ

ρ = E /V V ~ a−3

• for non-relativistic particle, E is conserved
• for relativistic photon, E is NOT conserved! 

E(νa ) > E(νb )

• for vacuum energy, 

E is NOT conserved! 

dU = −PdV
vacuum energy: 


where there is space, there it is

dU = ρdV
A negative EoS means, after a system work to the environment, 


its internal energy is increased instead of decreased.   

(CAN SNeIa measure H0?)



single component universe solution matter ingredient

baryon & DM is indistinguishable on the large scale

on the small scale, baryon stop collapsing once below its jeans radius
DM will keep collapsing until r~0

photon & neutrino is indistinguishable in the early stage (z>200)
once z<200, neutrino will becomes non-relativistic, behaves more like DM

As of DE:



4. Distance ds2 = −dt 2 + a2 (t)[dr2 + r2dθ 2 + r2 sin2θdϕ 2 ]

a light co-movingly propagate with background expansion along the radial direction from z1 to z0 dr = dt / a

Null-like geodesic ds = 0

χ = dr =
z1

z0

∫
dt
az1

z0

∫ = dz
H (z)z1

z0

∫• co-moving distance [along line-of-sight]:

• diameter distance [transverse]: r* known by prior (physical scale)
measure the angular separation  θ θ

r*

DA

z0

z1

DA =
r∗
θ

assuming Euclidean geometry, we can define 

But, this is WRONG! Physical geometry is NOT Euclidean, 

the co-moving one does! We need re-scale r* to the co-moving one, namely r*/a1

θ

r*/a1

z0

z1

χ

χ = (1+ z1)r*
θ

DA =
χ
1+ z

• luminosity distance:

Fobs (z0 ) =
LABS (z1)
4π *DL

2

z1

z0
LABS

SN ~109[L⊙ / s]

Fobs (z0 ) =
LABS (z0 )
4π *χ 2

In Euclidean geometry, we shall have 

LABS (z0 ) =
E0
δ t0

= E1 / (1+ z)
(1+ z)δ t1

= LABS (z1) / (1+ z)
2

DL = (1+ z)χ



[Pb3.]

calculate this number now!



Ωm,0 = 0.3

ΩΛ,0 = 0.7

Ωr ,0 = 10
−5

H0 = 68[km / s /Mpc]

c = 30*104 km / s

χ = c
H0

dz
E(z)z1

z0

∫ ;E2 (z) =Ωm,0 (1+ z)
3 +Ωr ,0 (1+ z)

4 +ΩΛ,0

z0 = 0;z1 = 1100

~14 Gpc 

t = c
H0

dz
E(z)(1+ z)z1

z0

∫

~138 billion yr 



5. Standard candle Fobs (z0 ) =
LABS (z1)
4π *DL

2 LABS
SN ~109[L⊙ / s]

SN Ia explode from a binary star system, typically

one white dwarf, one giant star 

MWD >1.44M⊙

(Chandrasekhar limit)

gravity > electron degeneracy pressure

λ0 ~ 3700A
!

z~6000/3700-1~0.6

χ = dr =
z1

z0

∫
dt
az1

z0

∫ = dz
H (z)z1

z0

∫

test cosmology

DL = (1+ z)χ



Hubble 1929

Now

H0=500

Discover DE



how to discover a SN



SNIa: standard candle —> standardised candle

time-scale 
stretch



6. standard ruler Baryon Acoustic Oscillation

χ ~150Mpc /DA ~150kpc

photon pressure balance gravity 

@ 150Mpc (co-moving scale)


physical scale ~ 150 kpc

DA =
χ
1+ z

χ = dr =
z1

z0

∫
dt
az1

z0

∫ = dz
H (z)z1

z0

∫

+
z~1100

test cosmology



e.g. measure the 3d spatial curvature

ds2 = −dt 2 + a2 (t)[ dr2

1− K(t)r2
+ r2dθ 2 + r2 sin2θdϕ 2 ]



ξ(r) = DD(r)
RR(r)

−1

exceed

Q: Why not 150?

BAO signal can also imprint on  
the matter distribution, e.g. galaxies

χ = dr =
z1

z0

∫
dt
az1

z0

∫ = dz
H (z)z1

z0

∫

photo-z
(photometric redshift)

test cosmology

characteristic  
break



Further reading:

• Baumann Lecture note/Chapter 1

• 宇宙⼤大尺度结构的形成 向守平、冯珑珑/Chapter 1,2,3

http://astrowww.bnu.edu.cn/sites/hubin/bh_bnu_homepage/#teach

This slide can be downloaded @


