arXiv:1712.09017, MNRAS Letter, with Xue-Wen Liu & Rong-Gen Cai

https://github.com/hubinitp/CHAM

CHAM: Fast modelling non-linear matter spectrum for the modified gravity

Bin HU

Astro @ Beijing Normal Univ

Shanghai/2018/Jun

"Screening" mechanisms:

The fifth force should act only on large scales and it should be hidden on small scales

Symmetryon mechanism

Symmetry transition in environment

Phenomenologically, MG effect shows as a SCale

dependent Newton constant

Unified Parametrisation

[Lucas Lombriser 1608.00522]

$$\frac{G_{eff}}{G} = A + \sum_{i}^{N_0} B_i \prod_{j}^{N_i} b_{ij} \left(\frac{r}{r_{0ij}}\right)^{a_{ij}} \left\{ \left[1 + \left(\frac{r_{0ij}}{r}\right)^{a_{ij}}\right]^{1/b_{ij}} - 1 \right\},$$

- (i) Screening at large field values such as in chameleon [4] or symmetron [6] models: This screening effect operates in regions where the Newtonian gravitational potential exceeds a given threshold, $|\Psi_N| > \Lambda_T$. The mapping of this mechanism to Eq. (2.12) will be described in Sec. 3.1.
- (ii) Screening with first derivatives such as in k-mouflage [5]: This screening effect is activated when the local gravitational acceleration passes a given threshold value, $|\nabla \Psi_N| > \Lambda_T^2$. The mechanism can be mapped to Eq. (2.12) as described in Sec. 3.2.
- (iii) Screening with second derivatives such as in the Vainshtein mechanism [3]: This screening mechanism operates when curvature or local densities become large, $|\nabla^2 \Psi_N| > \Lambda_T^3$. The mapping of this effect onto Eq. (2.12) is presented in Sec. 3.3.
- (iv) Linear suppression effects such as the Yukawa suppression or linear shielding mechanism [8]: These effects become important when separations cross the scale set by the linearised mass or sound speed of the field. The mapping to Eq. (2.12) is provided in Sec. 3.4.

Where we stand for testing GR with LSS?

SDSS LOWZ (z_{eff}=0.32)

N-body simulation of MG is too much expensive: hundreds of CPU, several weeks run

For P(K): Is there another way beside N-body?

Halo Model

discretise the continuous **matter** distribution into halo (bounded state)

$$P_m(k) \sim P_{2halo}(k) + P_{1halo}(k)$$

[Cooray & Sheth astro-ph/0206508v1]

Halo formation—Spherical Collapse

Halo formation—Spherical Collapse

Compton Wavelength Scale

$$k^2 \Psi(\mathbf{k}) = -4\pi G\left(rac{4}{3} - rac{1}{3}rac{\mu^2 a^2}{k^2 + \mu^2 a^2}
ight) a^2 \delta
ho_{\mathrm{m}}(\mathbf{k}), \qquad \mu^{-1} \longrightarrow ext{Compton wavelength}$$

$$k^2 << \mu^2 a^2$$

above Compton wavelength

Restore LCDM limit

 $|f_{R0}| \sim \frac{\mu^{-1}}{H_0^{-1}}$

 $\phi(r > R_*) \sim \frac{\delta R}{R_*} \frac{M}{r}$

 ξM

Charge

Chameleon Mechanism Screening Scale

The 5th force is screened in the high density regime!

Critical density threshold in f(R) gravity

We think DM halo is stable formed at this point

NON-LINEAR density at this point approaches singular at this point, $\delta_{\it non-linear}$ is NOT GOOD indicator of halo!

 $\delta_{lin} < \delta_c$ not yet!

LINEAR density at this point δ_c is regular, hence a GOOD proxy!

formed!

 $\delta_{lin} > \delta_{c}$

UP to now, we answered how a single spherical halo form.

Next question, how the halo distributed in the large scales?

 $\delta_{
m R}$

Scale dependent threshold

[Zhang & Hui, astro-ph/0508384v1]

large scale

 $\sigma_R^2 = <\delta_{\text{linear}}^2(\vec{x}, R) >$

Ellipsoidal Collapse

Ansatz:

SC

Halo Mass Function

[Sheth-Tormen, 1999]

Step-4: Halo mass function gives the mean number density in the range of $(M \sim M + dM)$

$P_{s} = \frac{1}{3}\bar{\rho}_{m}\Delta_{vir}c_{vir}^{3}\left[\ln(1+c_{vir}) - \frac{c_{vir}}{c_{vir}+1}\right]^{-1}$ $P_{s} = \frac{1}{c_{vir}}\left(\frac{3M_{vir}}{4\pi\bar{\rho}_{m}\Delta_{vir}}\right)^{1/3},$

Halo density profile (NFW profile)

$$c_v(M_v) = 9 \left| \frac{M_*}{M_v} \right|^{0.13}$$

Virial Mass

$$\sigma^{2}(R) = \langle \delta^{2}(\vec{x}; R) \rangle = \int \mathrm{d} \ln k \,\,\Delta^{2}(k) |W(k; R)|^{2}$$

~10%!

 $\sigma(M_*) = \delta_c$

 For the non-linear perturbation, halo model could give a reasonable estimation of the non-linear P(k) up to k~1 [h/Mpc] for Hu-Sawicki f(R) F4/F5 model.

