Effective Field Theory approach for Dark Energy/ Modified Gravity

Bin HU Lorentz Institute, Leiden University

> KITPC/ITP-CAS Beijing/China, Sept. 2015

> > EFTCAMB team

Outline

- 1. Evidence of late-time cosmic acceleration
- 2. Effective Field Theory approach for DE/MG
- 3. The structure of EFTCAMB
- 4. Planck-2015 results based on EFTCAMB
- 5. Conclusion

How do we know the Universe is accelerating?

Measurement of the distance of far away object

What we observed is line of sight integration effect

Need to know the intrinsic physics!

Standard candle

fixed luminosity

Standard ruler

fixed transverse scale

SNIa (White dwarf)

BAO— baryonic acoustic oscillation

The imprint of sound horizon of Recom epoch on the LSS

Most simplest explanation — LCDM

Is this the end of story?

Tension between high-z and low-z

matter fluct.— Planck (CMB) >> LSS (CFHTLenS)

[Planck15-CP paper]

Tension between high-z and low-z

Lensing amplitude — Primary CMB >> Secondary CMB

[Planck15-CP paper]

Tension between high-z and low-z

Mass bias of tSZ cluster — CMB << LSS

[Planck15-SZ paper]

Most part is below phantom divide!

[Planck15-MG paper]

[Planck15-MG paper]

GR predict, on the large scale, the two gravitational potentials are equal, due to the lack of sources of anisotropic stress!

All these motivate us to

INSPIRING WORDS OF BEYOND GR!

How to?

$$\mathsf{DE} \qquad G_{\mu\nu} = 8\pi G \Big[T^{cdm}_{\mu\nu} + T^b_{\mu\nu} + T^{\gamma}_{\mu\nu} + T^{\nu}_{\mu\nu} + T^{DE}_{\mu\nu} \Big]$$

$$\mathbf{MG} \qquad G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G \Big[T^{cdm}_{\mu\nu} + T^{b}_{\mu\nu} + T^{\gamma}_{\mu\nu} + T^{\nu}_{\mu\nu} \Big]$$

Not the math trick of RHS or LHS

What do I mean by DE and MG?

DE

EoS of exotic fluid

 $w = \frac{P}{\rho}$

$$LCDM \longrightarrow W=-1$$

MG

Growth rate of matter fluid

$$g(a) \equiv D(a)/a = \exp\left[\int_0^a (da'/a') \left[\Omega_M(a')^\gamma - 1\right]\right]$$

GR $\longrightarrow \gamma = 0.55$

Zeldovich Approximation-II

In the linear sub-Horizon regime, GR gives

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G\rho_m \delta_m = 0$$

The growth rate of CDM only depends on time!

The displacement field
$$ec{x}=ec{y}-\mathcal{D}(au)rac{1}{
abla_y^2}ec{
abla}_y\Delta_c(au_i,ec{y})$$

In GR: CDM particles trajectory is straight line!

A video of ZA

QuickTime Player File Edit View Window Help 🚺 : 😳 🐵 🐁 🎓 🛋 🔠 British 5% 💽 Fri 11 Sep 10:48 Q 😑 CPU: 3.3% (8 cores) RAM: 1.17GB / 16GB Ƴ File Sets Run View Help 24 bits × 1378px × 770px @ 6.31 FPS = 160.72 Mbp Compression: 69% (50.17 Mbps) isplacement: 100⁴ Slice 128 • nG COI bo rar zSt rea lin ß mι filt filt filt E filt filt filt filt 🛂 🖉 🖏 🛍 🗂 🖆 😒 🗐 🏹 🖊 🔌 🃝 🜞 🕀 🎘 🚫 📔 🔤 📼 📖

8

DE/MG:

Quasic-Static Approx:

$$egin{aligned} k^2\psi&=-4\pi G\,\mu(a,k)a^2
ho\Delta\ ,\ &rac{\phi}{\psi}&=\gamma(a,k)\ . \end{aligned}$$

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G_{\text{eff}}(t,k)\rho_m\delta_m = 0$$

DE/MG: at linear regime growth rate of CDM depends on the scales!

GR: The displacement field $\vec{x} = \vec{y} - \mathcal{D}(\tau) \frac{1}{\nabla_y^2} \vec{\nabla}_y \Delta_c(\tau_i, \vec{y})$

Beyond Zeldovich Approximation

Even at linear regime, trajectory of CDM particles are curved!

State-of-the-art of DE/MG models

Examples— f(R) gravity

Matter power spectrum— A robust probe!

Take home message: Compared with background probe, we should consider perturbation dynamics!

3. Effective Field Theory of DE/MG

 EFT provides a unified parametrisation of the scalar field perturbations in single scalar field DE/MG given background evolution.

$$S = \int d^4x \sqrt{-g} \left\{ \frac{m_0^2}{2} \left[1 + \Omega(\tau) \right] R + \Lambda(\tau) - a^2 c(\tau) \delta g^{00} + \frac{M_2^4(\tau)}{2} (a^2 \delta g^{00})^2 - \frac{\bar{M}_1^3(\tau)}{2} a^2 \delta g^{00} \delta K^{\mu}{}_{\mu} - \frac{\bar{M}_2^2(\tau)}{2} (\delta K^{\mu}{}_{\mu})^2 - \frac{\bar{M}_3^2(\tau)}{2} \delta K^{\mu}{}_{\nu} \delta K^{\nu}{}_{\mu} + \frac{a^2 \hat{M}^2(\tau)}{2} \delta g^{00} \delta R^{(3)} + m_2^2(\tau) (g^{\mu\nu} + n^{\mu}n^{\nu}) \partial_{\mu} (a^2 g^{00}) \partial_{\nu} (a^2 g^{00}) + \dots \right\} + S_m [\chi_i, g_{\mu\nu}],$$

[Bloomfield et. al. JCAP08(2013)010] [Gubitosi et. al. JCAP 1302 (2013) 032]

* There are 7 independent functions at linear level, EFT functions

- * Ω , Λ and c relate with background operators, only one are independent
- * EFT functions depend on time only

$$\begin{split} \mathcal{H}^2 &= \frac{a^2}{3m_0^2(1+\Omega)}(\rho_m + 2c - \Lambda) - \mathcal{H}\frac{\dot{\Omega}}{1+\Omega},\\ \dot{\mathcal{H}} &= -\frac{a^2}{6m_0^2(1+\Omega)}\left(\rho_m + 3P_m\right) - \frac{a^2(c+\Lambda)}{3m_0^2(1+\Omega)} - \frac{\ddot{\Omega}}{2(1+\Omega)}, \end{split}$$

$$\begin{split} c &= -\frac{m_0^2 \ddot{\Omega}}{2a^2} + \frac{m_0^2 \mathcal{H} \dot{\Omega}}{a^2} + \frac{m_0^2 (1+\Omega)}{a^2} (\mathcal{H}^2 - \dot{\mathcal{H}}) - \frac{1}{2} (\rho_m + P_m), \\ \Lambda &= -\frac{m_0^2 \ddot{\Omega}}{a^2} - \frac{m_0^2 \mathcal{H} \dot{\Omega}}{a^2} - \frac{m_0^2 (1+\Omega)}{a^2} (\mathcal{H}^2 + 2\dot{\mathcal{H}}) - P_m. \end{split}$$

3.1 The logic of construction of the action

1. Choose the time coordinate (clock), by asking

$$\delta \varphi(t, \vec{x}) \equiv \varphi(t, \vec{x}) - \bar{\varphi}(t) = 0$$

(breaking time translation diffemorphism)

2. Build the block of the action by the operators which keep the unbroken 3D spatial Diffs

$$\delta g^{00}, \, \delta K_{\mu\nu}, \, \delta R_{\mu\nu\rho\sigma} \text{ (or } C_{\mu\nu\rho\sigma}), \, \delta R_{\mu\nu}, \text{ and } \delta R,$$

3. Multiply these operators by a only time dependent function

$$\begin{split} S &= \int d^4 x \sqrt{-g} \bigg\{ \frac{m_0^2}{2} [1 + \Omega(\tau)] R + \Lambda(\tau) - a^2 c(\tau) \delta g^{00} \\ &+ \frac{M_2^4(\tau)}{2} (a^2 \delta g^{00})^2 - \frac{\bar{M}_1^3(\tau)}{2} a^2 \delta g^{00} \delta K^{\mu}{}_{\mu} - \frac{\bar{M}_2^2(\tau)}{2} (\delta K^{\mu}{}_{\mu})^2 \\ &- \frac{\bar{M}_3^2(\tau)}{2} \delta K^{\mu}{}_{\nu} \delta K^{\nu}{}_{\mu} + \frac{a^2 \hat{M}^2(\tau)}{2} \delta g^{00} \delta R^{(3)} \\ &+ m_2^2(\tau) (g^{\mu\nu} + n^{\mu} n^{\nu}) \partial_{\mu} (a^2 g^{00}) \partial_{\nu} (a^2 g^{00}) + \dots \bigg\} \end{split}$$

 $+S_m[\chi_i,g_{\mu\nu}], \qquad (1)$

How we know EFT approach is equivalent to the Covariant approach?

Covariant approach

Only Valid in the unitary gauge

 $\delta arphi(t, \vec{x}) \equiv arphi(t, \vec{x}) - ar{arphi}(t) = 0$

EFT approach=> Covariant approach

Stuckburg trick: restore full covariance

2.3 Parametrizations

1. Full mapping

(From the covariant form)

e.g.

$$f(R) = -m^2 \frac{c_1 (R/m^2)^n}{c_2 (R/m^2)^n + 1},$$

[Hu,Sawicki PRD76, 064004 (2007)]

$$\Lambda = \frac{m_0^2}{2} \left[f - R f_R \right] \quad ; \quad c = 0 \quad ; \quad \Omega = f_R$$

(Work in progress with Rizzato et. al.)

2. Pure EFT parametization

(Phenomenological param)

Constant models: $\Omega(a) = \Omega_0;$

Linear models: $\Omega(a) = \Omega_0 a;$

Power law models: $\Omega(a) = \Omega_0 a^s$;

Exponential models: $\Omega(a) = \exp(\Omega_0 a^s) - 1.$

Have to make sure that your parametrisation to be viable, e.g. ghost-free!

3. The structure of EFTCAMB

We implement the pi field into the Einstein-Boltzmann solver CAMB —> EFTCAMB

Evolving the full Einstein equation, Klein-Golden equation (pi field), fluid equation (CDM,baryon, massive neutrino),Boltzmann hierarchy equation sets (CMB, massless neutrino)

[Hu et.al. PRD89,103530(2014); PRD90,043513(2014); PRD91,063524(2015)] http://wwwhome.lorentz.leidenuniv.nl/~hu/codes/

http://wwwhome.lorentz.leidenuniv.nl/~hu/codes/

perturbations in any specific DE/MG model that can be cast into EFT framework. To interface EFTCAMB with cosmological data sets, we equipped it with a modified version of CosmoMC, namely EFTCosmoMC, creating a bridge between the EFT parametrization of the dynamics of perturbations and observations.

🗯 Safari File Edit V	ïew History Bookmarks Window He		🍵 韖 🔽 🕙 🖇 奈 🜒 🎟 British 46%	() [) Wed 27 May 08:40 및 :三
••• < > ••	0	www2.clustrmaps.com	Ċ	ô 0 0
	Falconic Ganglia Inbox LAMBDA Euclid Rec	ne PLA CosmoCoffee SAO/NASA ADS ING Google 荷乐网	에 YouTube arXiv INSPIRE IL Google 翻译 Bit	tbucket +

Archive | Notes | Full Map Key

clicked 1500+ times

2.1 Background parametrization—EoS

EFTCAMB provides 6 different kinds of parametrization of EoS (Flag: EFTwDE), including:

LCDM (w=-1),

wCDM (w=wo),

.

CPL (w=wo+wa*a),

2.2.1 EFT parametrization: Pure EFT

Phenomenological parametrization, e.g.

Constant models: $\Omega(a) = \Omega_0$; Linear models: $\Omega(a) = \Omega_0 a;$ Power law models: $\Omega(a) = \Omega_0 a^s$; Exponential models: $\Omega(a) = \exp(\Omega_0 a^s) - 1.$ Pure EFT \Omega model selection: (Flag: PureEFTmodelOmega) 1: pure EFT Pure EFT \alpha_1 model selection: (Flag: PureEFTmodelAlpha1) Use some 0: Zero parametrized Pure EFT \alpha 2 model selection: forms for the (Flag: PureEFTmodelAlpha2) 1: Constant EFT functions Pure EFT \alpha_3 model selection: 2: Linear model (Flag: PureEFTmodelAlpha3) 3: Power law model Pure EFT \alpha_4 model selection: (Flag: PureEFTmodelAlpha4) 4: Exponential model Pure EFT \alpha_5 model selection: 5: User defined (Flag: PureEFTmodelAlpha5) Pure EFT \alpha_6 model selection: (Flag: PureEFTmodelAlpha6)

2.2.2 EFT parametrization: Full mapping—designer mapping

• EFT: Do NOT rely on QS approx!

time-time Einstein equation:

$$k^{2}\eta = -\frac{a^{2}}{2m_{0}^{2}(1+\Omega)}\left[\delta\rho_{m} + \dot{\rho}_{Q}\pi + 2c\left(\dot{\pi} + \mathcal{H}\pi\right)\right] + \left(\mathcal{H} + \frac{\dot{\Omega}}{2(1+\Omega)}\right)k\mathcal{Z} + \frac{\dot{\Omega}}{2(1+\Omega)}\left[3(3\mathcal{H}^{2} - \dot{\mathcal{H}})\pi + 3\mathcal{H}\dot{\pi} + k^{2}\pi\right]$$

momentum Einstein equation:

$$\frac{2}{3}k^2\left(\sigma_* - \mathcal{Z}\right) = \frac{a^2}{m_0^2(1+\Omega)} \left[(\rho_m + P_m)v_m + (\rho_Q + P_Q)k\pi \right] + k\frac{\dot{\Omega}}{(1+\Omega)} \left(\dot{\pi} + \mathcal{H}\pi \right) \,,$$

space-space off-diagonal Einstein equation:

$$k\dot{\sigma}_* + 2k\mathcal{H}\sigma_* - k^2\eta = -\frac{a^2P\Pi_m}{m_0^2(1+\Omega)} - \frac{\dot{\Omega}}{(1+\Omega)}\left(k\sigma_* + k^2\pi\right),$$

space-space trace Einstein equation:

$$\begin{split} \ddot{h} &= -\frac{3a^2}{m_0^2(1+\Omega)} \left[\delta P_m + \dot{P}_Q \pi + \left(\rho_Q + P_Q\right) \left(\dot{\pi} + \mathcal{H}\pi\right) \right] - 2 \left(\frac{\dot{\Omega}}{1+\Omega} + 2\mathcal{H} \right) k\mathcal{Z} + 2k^2 \eta \\ &- 3 \frac{\dot{\Omega}}{(1+\Omega)} \left[\ddot{\pi} + \left(\frac{\ddot{\Omega}}{\dot{\Omega}} + 3\mathcal{H} \right) \dot{\pi} + \left(\mathcal{H} \frac{\ddot{\Omega}}{\dot{\Omega}} + 5\mathcal{H}^2 + \dot{\mathcal{H}} + \frac{2}{3}k^2 \right) \pi \right], \end{split}$$

• For Klein-Golden Eq. Of π field

$$\begin{split} &\left(c + \frac{3m_0^2}{4a^2} \frac{\dot{\Omega}^2}{(1+\Omega)}\right) \ddot{\pi} + \left[\frac{3m_0^2}{4a^2} \frac{\dot{\Omega}}{(1+\Omega)} \left(\frac{\ddot{\Omega} + 4\mathcal{H}\dot{\Omega} + \frac{(\rho_Q + P_Q)a^2}{m_0^2}}{m_0^2}\right) + \dot{c} + 4\mathcal{H}c - \frac{\dot{\Omega}}{2(1+\Omega)}c\right] \dot{\pi} \\ &+ \left[\frac{3}{4} \frac{m_0^2}{a^2} \frac{\dot{\Omega}}{(1+\Omega)} \left(\frac{(3\dot{P}_Q - \dot{\rho}_Q + 3\mathcal{H}(\rho_Q + P_Q))a^2}{3m_0^2} + \mathcal{H}\ddot{\Omega} + 8\mathcal{H}^2\dot{\Omega} + 2(1+\Omega)(\ddot{\mathcal{H}} - 2\mathcal{H}^3)\right) \right. \\ &\left. - 2\dot{\mathcal{H}}c + \left(\dot{c} - \frac{\dot{\Omega}}{2(1+\Omega)}c\right)\mathcal{H} + 6\mathcal{H}^2c + \left(c + \frac{3m_0^2}{4a^2} \frac{\dot{\Omega}^2}{(1+\Omega)}\right)k^2\right]\pi \\ &+ \left[c + \frac{3}{4} \frac{m_0^2}{a^2} \frac{\dot{\Omega}^2}{(1+\Omega)}\right]k\mathcal{Z} + \frac{1}{4} \frac{\dot{\Omega}}{(1+\Omega)}(3\delta P_m - \delta\rho_m) = 0, \end{split}$$

kinetic friction mass sound speed source $A(\tau) \ddot{\pi} + B(\tau) \dot{\pi} + C(\tau) \pi + k^2 D(\tau) \pi + E(\tau) = 0$

Have pass the viability condition:

 Effective Newton constant does not change sign: 1+Ω>0
 ghost instability: A>0
 sound speed <=1: D/A<=1
 mass square >= 0: C/A>=0

pi field solution: f(R) example

2.4 CMB spectra—example: f(R)

2.5 Transfer function of CDM

Designer f(R) with LCDM background B0=0.001

Designer f(R) with wCDM background B0=0.01 and w=-0.95

4. Parameter estimation results from EFTCosmoMC and Planck-2015

5. Conclusion

- EFTCAMB include most of viable single field DE/MG model
- For scalar field: full perturbative treatment, does not rely on quasistatic approx
- Support various background, LCDM/wCDM/CPL ...
- Check the stability for given parameterization
- Selected by Planck 2015 data release
- Selected by Theory Working Group of Euclid
- New release will come soon updated with PLC2.0

Thank you!

the EFTCAMB team